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1 Introduction

These informal notes are intended as a supplement to lectures given at the
Physics Department of MSU-IIT in January of 2009. Their main goal was
twofold: to provide some additional mathematical underpinnings for applica-
tions of (Gaussian) White Noise Analysis in current and future research at that
institute, and secondly to introduce recent developments in the theory of in-
�nite particle systems in the continuum. These latter are based on Poisson
White Noise, and we shall see that many structures of the Gaussian analysis
have natural analogues in the Poissonian case.

To set the stage we �rst review concepts from �nite dimensional analysis,
more speci�cally from measure and integration, probability, and generalized
functions.

Teaching this course was a great pleasure for the lecturer, and he would like
to express his gratitude to his hosts at MSU-IIT for their generous hospitality:
Chancellor Marcelo P. Salazar, Dean of the College of Science and Math Romulo
C. Guerrero, Department Chair J. Bornales, and sta�, and of course to the
students, who kept the enthusiasm bubbling, for feedback and corrections. Drs.
V. and Chr. Bernido of RCTP, Jagna, deserve thanks for establishing links
and for helping me to choose and prepare the material. Material support came
from CHED-ZRC Region X., DAAD, DOST-PCASTRD, and MSU-IIT, and is
gratefully acknowledged.

2 Measure, Integration, and Probability

Refs. : [3][5][7][8][10][11], many others!
Measure theory is not only the basis for any modern theory of integration,

but also for practical numerical methods such as Monte Carlo integration. It
provides the foundation for probability theory, indispensable in virtually all
branches of physics, and fundamental in quantum theory.

Consider a triplet f 
 ; B ;mg, where

� 
 is an arbitrary set

� B is a collection of subsets of 
 : the "measurable sets"
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� m attributes a non-negative number to each measurable set: its "mea-
sure".

Wanted: Some reasonable properties!

2.1 Measure spaces

De�nition 1 Let 
 be an arbitrary set andB a collection of subsets of
 ; such
that

A 2 B =) Ac = 
 � A 2 B (1)

; 2 B (2)

Ak 2 B =)
1[

k=1

Ak 2 B

Then we say thatB is a " � � algebra over
" .

Problem 1 For an arbitrary set 
 , construct a couple of� � algebras over
 :

Problem 2 For an arbitrary � � algebraB and A; B 2 B show thatA \ B 2 B :

De�nition 2 Let
m : B ! [0; 1 ] (3)

with
m (; ) = 0 (4)

and "� � additivity"

Ak 2 B disjoint =) m

 
1[

k=1

Ak

!

=
X

m(Ak ) : (5)

Then m is called a measure, and the tripletf 
 ; B ; mg is called a "measure
space".

Finite measures havem(
) < 1 , � � �nite measures are such that 
 is a
countable union of sets of �nite measure.

Demanding only

Ak 2 B =)
n[

k=1

Ak 2 B (6)

for �nite unions, one would speak of an "algebra of sets".

Remark 1 Connection with logics:
\ = "and",
[ = "or"
A ! Ac = "negation".
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We usually reserve the label "algebra" for structures in which one can add
and multiply elements with one another and multiply by "numbers". Let us just
state here that algebras of sets are indeed algebras if we de�ne multiplication
as

A1 � A2 = A1 \ A2;

addition as
A1 + A2 = ( A1 \ Ac

2) [ (Ac
1 \ A2)

and as "numbers", we permit the integers modulo 2 (where integers are identi�ed
if they di�er by a multiple of 2), so that

1 � A = A;

0 � A = ;

Problem 3 1. Are addition and multiplication commutative?

2. Compute and interpret
A + A =?

3. Check

(A + B ) + C = A + ( B + C)

A(B + C) = AB + AC

2.1.1 Translation to Probability Theory

� 
 is called "Sample Space"

� B is the set of "Events"

� m = p with 0 � p � 1 is called a "Probability Measure" and f 
 ; B ; pg is
a "Probability Space".

Problem 4 When you roll a die, the possible outcomes are represented by the
numbers

f 1; 2; 3; 4; 5; 6g:

Construct a suitable probability spacef 
 ; B ; pg:

Theorem 1 For any collection M of subsets of
 there is a smallest� � algebra
over 
 containing M .

Proof. Take the intersection of all the � � algebras containingM .

Theorem 2 ( Carath�eodory Extension Theorem) Any non-negative � � additive
set function f on an algebra of setsA can be extended to the smallest� � algebra
B containing A. For � -�nite f the extension is unique.

For proofs of this important fact consult books on measure and integration
theory.
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Example 1 "Counting Measure"

� (A) = #( A) (= no. of elements in A) (7)

Example 2 "Dirac Measure"

� a(A) =
�

1 if a 2 A
0 otherwise

(8)

2.2 Lebesgue Measure

Example 3 Lebesgue Measure on
 = [ a; b) � R1:

A =
�

[ N
i =1 [ai ; bi ) � 


	
(9)

is a set algebra .

De�nition 3 The � � algebraB 0 generated byA is called "Borel algebra"

The interval length

� 0([ai ; bi )) = jbi � ai j (10)

extends onA to a � -additive set function and hence to a measure, the "Lebesgue
Measure" � on B 0(Rn ):

� Extension to Rn is evident. Use volume instead of length:

� 0([�! a ;
�!
b )) =

nY

1

jbi � ai j (11)

� � is translation- and for n > 1 rotation invariant:

� (A) = � (f x + c : x 2 Ag (12)

for c 2 Rn , and for rotations R

� (A) = � (f Rx : x 2 Ag (13)

� Countable subsets are Borel sets:

f x i : i = 1 ; 2; : : :g = [ i f x i g (14)

= [ i \ m f [x i ; x i +
1
m

)g 2 B 0: (15)

6



The set Q of rational numbers is Borel-measurable:

� (Q) = 0 : (16)

Note:
� (f xg) � � (f [x; x +

1
m

)g) =
1
m

: (17)

for all m, hence
� (f xg) = 0 : (18)

Use Sigma-Additivity to conclude: all countable sets have Lebesgue measure
zero!

2.3 A Non-Measurable Set

Consider 
 = R and � the Lebesgue measure.
Have translation invariance:

� (A + x) = � (A) (19)

where
A + x � f a + x : a 2 Ag: (20)

Now construct a set A � R as follows:
Call x; y equivalent if their di�erence is rational:

x � y () x � y 2 Q: (21)

Let now A � [0; 1] consist of a maximal set of inequivalent numbers ("one
from each equivalence class"). Then, for all rationalr i 2 Q; with r i 6= r k ; have

(A + r i ) \ (A + r k ) = ;

since otherwise
a + r i = b+ r k (22)

and hence
a � b = r k � r i (23)

rational, which should not be the case fora and b in A. So
[

r 2 [� 1;1]

(A + r i ) (24)

is a union of disjoint sets.
Using � -additivity and translation invariance

�

0

@
[

r 2 [� 1;1]

(A + r i )

1

A =
X

r 2 [� 1;1]

� (A + r i ) =
X

r 2 [� 1;1]

� (A) =
�

0
1

(25)
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depending on whether� (A) is zero or positive. Note on the other hand

[0; 1] �
[

r 2 [� 1;1]

(A + r i ) � [� 1; 2]: (26)

i.e.

1 � �

0

@
[

r 2 [� 1;1]

(A + r i )

1

A � 3; (27)

in contradiction to the previous computation. The only way out: A is not
measurable!

2.4 Distribution Functions

More measures onB 0(R) can be obtained through "distribution functions":

De�nition 4 Functions
F : R ! R (28)

monotonely growing and continuous from the left are called distribution func-
tions. The extension of

� F ([a; b)) � F (b) � F (a) (29)

to a measure onB 0(R) is called a "Lebesgue-Stieltjes Measure with distribution
F ".

Alternatively we could have de�ned

� F ((a; b]) = F+ (b) � F+ (a) (30)

with
F+ (b) = F (b) + � F (f bg) = lim

" ! +0
F (b+ "): (31)

1. F+ is right continuous.

2. � F is a probability measure i�

F (1 ) � F (�1 ) = 1 (32)

3. Example (Dirac Measure on R):

F (x) =
�

1 for x > �
0 otherwise

(33)

More generally:

F (b+ ") � F (b) ! m , � (f bg) = m (34)

For discrete measures F is piecewise constant.
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De�nition 5 Let

F (x) =
Z x

�1
� (y)dy with � � 0: (35)

Then � is called the "density".

Example 4 (Cauchy distribution):

�
1
2

< F (x) =
1
�

arctan x <
1
2

(36)

with
� (x) = F 0(x) =

1
� (1 + x2)

: (37)

Note: All distributions with density are continuous, and F 0 = �:
But there are continuous distributions without density as we shall see now.

2.4.1 Cantor Set and Devil's Staircase

Construct a set T � [0; 1] as follows:
1. Take the open middle third (1=3; 2=3) of the initial interval [0 ; 1]
2. Add the open middle thirds of the remaining intervals
3. Add the open middle thirds of the remaining intervals
4. ...etc....

T = (1 =3; 2=3) [ (38)

(1=9; 2=9) [ (7=9; 8=9) [ (39)

(1=27; 2=27) [ : : : : (40)

De�nition 6 The remaining set

C � [0; 1] � T

is called the "Cantor Set".

To check it out write the x 2 [0; 1] as follows ("base three")

x =
X

an 3� n with an = 0 ; 1; 2: (41)

Note that this is not always unique:

x =
1X

n =2

2 � 3� n = 2 �
1X

n =2

3� n =
2
9

1X

n =0

�
1
3

� n

(42)

=
2
9

1
1 � 1

3

=
1
3

= 1 � 3� 1: (43)

In these cases we always adopt the �rst, in�nite series version. Then one �nds
that x is in T i� at least one an is equal to one. In other wordsx 2 C i� all the
an are 2 or 0. For example 1=3 2 C .
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How big is C? Well, how big is T? We can easily calculate its Lebesgue
measure:

� (T) = 1 =3 + 2 � 1=9 + 4 � 1=27 + : : : (44)

+2 n � 1 � 3� n + : : : (45)

=
1
3

1X

n =0

�
2
3

� n

=
1
3

1
1 � 2

3

= 1 : (46)

Hencethe Cantor set has measure zero! But it is not countable: its elements
are as many as there are sequences of zeroes and twos, i.e. as many as there are
sequences of zeroes and ones, hence as many as there are real numbers in the
interval [0,1] (just write them in binary form!).

Now to the Devil's Staircase:
Consider the function

F (x) �
1
2

N � 1X

n =1

2� n an + 2 � N (47)

where N is the smallest index for whichaN = 1 : In particular on T

F = 1=2 resp. 1=4; 3=4 resp. 1=8; 3=8; 5=8; 7=8 ...etc: (48)

F is continuous, monotone hence a distribution function, but almost everywhere,
i.e. on the intervals constituting T, F is in fact constant, with F 0= 0, so that
we cannot have

F =
Z

�dx: (49)

The measure de�ned byF is "singular".
Generally there exists a "Lebesgue decomposition" of any measure into a

discrete, a singular and an "absolutely continuous" part. While one encounters
discrete and/or absolutely continuous measures most of the time in physics,
singular ones cannot be disregarded: as an example we cite the occurrence of the
devil's staircase in the context of the inviscid Burgers equation with (fractional)
Brownian initial data [2][13][14][15].

2.4.2 Measurable Functions

De�nition 7 Given f 
 ; B g. A function

f : 
 ! R (50)

is called "measurable" if pre-images of Borel setsA 2 B 0 are in the � � algebra
B :

f � 1(A) � f ! 2 
 : g 2 B : (51)

In a probabilistic terminology they are called "random variables".
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1. In the probabilistic context measurability is natural: we accept a function
on the sample space as a random variable i� "f (! ) 2 A" is an event, i.e.
has a well-de�ned probability.

2. Measurability depends not on the measure, but only on the pair 
; B

f 2 M f 
 ; B g: (52)

3. With Respect to. B = B 0(Rn ); all continuous functions are measurable.
Reason: for continuous functions the pre-images of open sets are open,
hence Borel measurable.

Problem 5 Let 
 = R1, and

f (! ) = sin !:

Compute f � 1(A) for A = ( � 2; 2) , A = (0 ; 1] and A = (2 ; 3).

Problem 6 Consider the example of a die, and

f (! ) =
�

1 for even !
� 1 otherwise

Compute f � 1(A) for A = f x > 0g and for A = f x > 4g:
Which functions are measurable?

Consider "Indicator Functions" of sets M 2 
:

� M (! ) =
�

1 falls ! 2 M
0 otherwise

: (53)

Now inspect the pre-images of setsA 2 B 0(R1)

1 2 A 0 =2 A =) � � 1
M (A) = M

1 2 A 0 2 A =) � � 1
M (A) = 


1 =2 A 0 2 A =) � � 1
M (A) = 
 � M

1 =2 A 0 =2 A =) � � 1
M (A) = ;

(54)

All possible pre-images are thus listed on the right, and are measurable ifM is.
Hence indicator functions � M are measurable i� M is.

Similarly for "simple" functions

f �
1X

i =1

ai � M i
: (55)
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Theorem 3 If f i are f 
 ; B g-measurable, then so are
a) g(! ) = af 1 (! ) + bf2 (! ) with real a; b
b) g (! ) = ' (f 1 (! )) with ' 2 B 0(R1)
c) g (! ) = f 1 (! ) f 2 (! )
d) g (! ) = f 1 (! ) =f 2 (! )
e)g (! ) = jf 1 (! )j
f ) g (! ) = lim inf n f n (! ) ; g (! ) = lim sup n f n (! ) ;
g (! ) = sup n f n (! ) ; g (! ) = inf n f n (! ) :

Approximation by Simple Functions:

Theorem 4 Let f � 0 and f 
 ; B g-measurable. Then there is a monotonely
growing sequence of simple functions with

f n (! ) % f (! ) (56)

for all ! 2 
 :

Proof. Set

f n (! ) =
�

n for f (! ) > n
[2n f (! )] =2n otherwise

: (57)

2.5 Integrals, Expectations

Motivation: Let f 
 ; B ;pg be a probability space, and

f �
NX

i =1

ai � M i
(58)

a simple random variable. A natural de�nition of expectation for this random
variable would be the weighted average of its valuesai :

E (f ) �
NX

i =1

ai p(M i ) : (59)

De�nition 8 Let f 
 ; B ;mg be a measure space and

f �
1X

i =1

ai � M i
� 0 (60)

f 
 ; B g-measurable. Then we set

Z



f (! )dm(! ) �

1X

i =1

ai m (M i ) (61)

as the "integral of f over 
 with respect to the measure m".
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Note:

1. For step functions
f jI k = f k (62)

and the Lebesgue measure, the integral is the same as the Riemann integral
: Z

R 1
f (x)d� (x) �

1X

k=1

f k � (I k ) =
1X

k=1

f k jI k j : (63)

2. But there are many more simple functions:

f (x) =
�

1 for x rational
0 otherwise

(64)

This is a simple function, and
Z

R 1
f (x)d� (x) = 1 � � (Q) + 0 � � (Qc) = 0 : (65)

3. Notations Z



f (! )dm(! ) �

Z



f (! )m(d! ) �

Z



fdm (66)

and Z

A
f (! )dm(! ) �

Z



f (! )� A (! )dm(! ): (67)

Call 0� f 2 M (
 ; B ) "integrable", if
R


 fdm is �nite.

Theorem 5 Let 0 � f 2 M (
 ; B ) and f n simple, with

f n (! ) % f (! ) : (68)

then for any m on f 
 ; B g there exists a unique
Z



f (! )dm(! ) � lim

Z



f n (! )dm(! ): (69)

Special case: Lebesgue Integral, based on Borel measure,f 
 ; B ;mg= f Rn ; B 0; � g :
For continuous functions the Lebesgue integral coincides with that of Riemann:

Z

R
f (! )d� (! ) =

Z 1

�1
f (x)dx: (70)

Properties of
R


 f (! )dm(! ) :

1. For f 2 M (
 ; B ) set f = f + � f � with f � � 0 and
Z



f (! )dm(! ) �

Z



f + dm �

Z



f � dm: (71)

(Must avoid 1 � 1 on the rhs., if
R


 jf j dm �nite, i.e.. jf j integrable, we
say that f is integrable).
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2. Let f � 0: Then Z



f (! )dm(! ) � 0 (72)

and Z



f (! )dm(! ) = 0 = ) m (f f 6= 0g) = 0 (73)

3. Z
(af 1 + bf2) dm = a

Z
f 1dm + b

Z
f 2dm (74)

4.

f � g =)
Z

fdm �
Z

gdm (75)

5. Z
jf j dm �

�
�
�
�

Z
fdm

�
�
�
� (76)

Consider the Lebesgue measure. The integral
Z

R 2
f (x)d� (d=2) (x)

based on the Lebesgue measure on the planeR2, and the two iterated one
dimensional integrals

Z

R 1

� Z

R 1
f (x)d� (d=1) (x1)

�
d� (d=1) (x2) (77)

Z

R 1

� Z

R 1
f (x)d� (d=1) (x2)

�
d� (d=1) (x1) (78)

need not be equal! They are if one of them is �nite forjf j instead of f ("Fubini
Theorem").

2.5.1 Convergence of Integrals

Often one has sequencesf n 2 M (
 ; B ) and wants to control convergence of
Integrals

R
A f n dm: A simple criterion is

Theorem 6 Let m(A) < 1 and

f n ! f (79)

uniformly on A. Then Z

A
f n dm !

Z

A
fdm: (80)
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Proof. Let " > 0: then there is N such that

jf n (! ) � f (! )j � " (81)

for all n > N and all ! 2 A: Hence
�
�
�
�

Z

A
f n dm �

Z

A
fdm

�
�
�
� �

Z

A
jf n � f j dm � " � m(A): (82)

Some stronger results:
Let

f n (! ) ! f (! ) (83)

for m-almost-all !: And further:

(M)
0 � f n (! ) % f (! ) (84)

"monotone convergence"

or

(D)
jf n (! )j � g(! ) (85)

with integrable g ("dominated convergence")

Then Z
f n dm !

Z
fdm: (86)

2.5.2 The Radon-Nikodym Theorem

Here we consider two sigma-�nite measuresmi onf 
 ; B g; with

m1(A) = 0 = ) m2(A) = 0 : (87)

De�nition 9 One calls "m2 absolutely continuous with respecttom1" and writes

m2 � m1: (88)

Example 5 Let

m1(A) =
Z

A
dm1 (89)

and

m2(A) =
Z

A
%(! ) dm1 (! ) with %(! ) � 0: (90)

If the �rst integral vanishes then so does the second:m2 is absolutely continuous
with respect to m1: Conversely:

15



Theorem 7 ("Radon-Nikodym") Let m2 be absolutely continuous with respect
to m1: Then there exists

0 � %2 M (
 ; B ) (91)

such that Z
fdm 2 =

Z
f%dm1: (92)

Notation:

%=
dm2

dm1
(93)

"Radon-Nikodym derivative" or "Density" of m2 with respect to m1: The sigma-
�niteness is essential.

Counter-Example with a non-sigma-�nite measure: Given some 

and B = f; ; 
 g: I.e. there is only one non-empty measurable set, so that all
measurable functions are constant.

Let

m2(
) = 1 (94)

m1(
) = 1 (95)

Both have the same zero-set(s) hence are absolutely continuous with respect to
each other, and we would have

1 = m2(
) =
Z

dm2 =
Z

%dm1 = %
Z

dm1 = %m1(
) = %� 1 ; (96)

which does not make sense.

2.5.3 The Monte-Carlo Method

Let
f : [0; 1] ! [a; b] (97)

and I 1; : : : I n a decomposition of [a; b] in n subintervals I k = [ yk ; yk+1 ) y0 = a;
yn = b:

Let N1 = : : : = Nn = 0
(*) choose x = RND
compute f (x)
If f (x) 2 I k set Nk ! Nk + 1
GOTO (*)
After N loops compute

I =
NX

k=1

yk
Nk

N
(98)

=
NX

k=1

yk � p (f x : f (x) � yk g) (99)

�
Z

f (x)d� (x):: (100)
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2.6 Some Fundamentals of Probability Theory


 : sample space
A 2 /B : event
p(A): probability of the event A
f 2 M (
 ; _B ) : random variable
E(f ) = f =

R

 f (! )dp(! ) : expectation or mean value of the random

variable f .
p produces the expectations. Note that conversely

E(� A ) = p(A) (101)

E
�
(f � f )2

�
= var(f ) = � 2 : Variance, mean square deviation. important

to describe 
uctuations around the mean value f :
Question:

p
��

! :
�
� f (! ) � f

�
� > "

	�
=? (102)

To control this, introduce, for " > 0

f " (! ) =
�

f + " if
�
� f (! ) � f

�
� > "

f otherwise
(103)

i.e.

f " (! ) � f =
�

" if
�
� f (! ) � f

�
� > "

0 otherwise
: (104)

Then, for all !
�
f " (! ) � f

� 2
�

�
f (! ) � f

� 2
(105)

and further
E

� �
f " � f

� 2
�

� E
� �

f � f
� 2

�
= var(f ) (106)

i.e.

E
� �

f " � f
� 2

�
=

Z �
f " (! ) � f

� 2
dp(! ) (107)

= "2 � p
��

! :
�
� f (! ) � f

�
� > "

	�
(108)

� var(f ) (109)

so that

p
��

! :
�
� f (! ) � f

�
� > "

	�
�

var(f )
"2 (110)

("Tchebyshev Inequality".)

Notation:
E(f n ) = mn (111)
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is called the "n :th moment of the random variable f"

f = m1

var(f ) = m2 � m2
1:

2.6.1 Covariance and Correlation

De�nition 10 For X,Y 2 M (
 ; B ) call

cov(X; Y ) � E ((X � mX ) (Y � mY )) (112)

their covariance.

rX:Y �
cov(X; Y )

� X � Y
(113)

is the "correlation coe�cient of X and Y", with

� 1 � rX:Y � 1 (114)

jr X:Y j = 1 (115)

i� X and Y are linearly dependent: we have then

Y (! ) = r X:Y
� Y

� X
(X (! ) � mX ) + mY (116)

(for almost all ! ). Proof?
Important concept: the "distribution of a random variable y 2 M (
 ; B ) :

De�nition 11 For A 2 B 0(R) call

p (f ! : y(! ) 2 Ag) � pY (A) (117)

the "distribution of the random variable y" :

For given y; pY is a probability measure on the Borel spacef R; B 0(R)g and

E (g(y)) =
Z



g(y(! ))dp(! ) =

Z

R
g(x)dpY (x) (118)

Integration over the set R of values instead of over the sample space 
 !
Note:

1.

mn = E(f n ) =
Z

R
xn dpY (x) (119)
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2. Generalization: the "joint distribution" of an n-tuple
�!
Y of random variable s:

p�!
Y a probability measure on f Rn ; B 0(Rn )g with

E
�

g(
�!
Y )

�
=

Z

R n
g(x)dp�!

Y (x): (120)

3. The moments of a random variable may diverge! Ex. (Cauchy ):

dpY (x) = � (x)dx (121)

with
� (y) =

1
� (1 + x2)

(122)

Figure 1: The probability density � (x)

mn = E(f n ) =
Z

R
xn dpY (x) (123)

=
Z

R

xn

� (1 + x2)
dx (124)

is divergent for all n > 0:

De�nition 12 Events Ak k 2 I , are "independent", if for all subsets J

p

 
\

k2 J

Ak

!

=
Y

k2 J

p(Ak ) : (125)
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Random variablesYk are called "independent", if their joint distribution factor-
izes; the joint distribution factorizes:

dp�!
Y (�! x ) =

nY

k=1

dpYk (xk ): (126)

The events Ak :Yk 2 Bk are then independent:

p

 
\

k2 J

Ak

!

=
Z

dp�!
Y (�! x )

nY

k=1

�
B k

(xk ) (127)

=
nY

k=1

Z
dpYk (xk )�

B k
(xk ) (128)

=
nY

k=1

p(Ak ) : (129)

2.7 Characteristic Functions

We have seen that from the distribution of a random variable Y we can deter-
mine expectations:

E (g(Y )) =
Z

R
g(x)dpY (x) (130)

Conversely
E(� A (Y )) = pY (A): (131)

Another class of expectations which completely characterizes a distribution:

De�nition 13

CY (� ) � E
�
ei�Y �

=
Z

R
ei�x dpY (x): (132)

If.
dpY (x) = � (x)dx; (133)

then

CY (� ) =
Z

R
ei�x � (x)dx; (134)

is the "Fourier transform" of the density � . More generally, for �nite measures
m we also call its "characteristic function"

C(� ) =
Z

1R n
ei ( �;x ) dm(x) (135)

the "Fourier transform of the measure m".
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Example 6 ("Gaussians")
Remember: Z

1R
e� 1

2 x 2
dx =

p
2� (136)

Rescale, with a> 0:
Z

1R
e� a

2 x 2
dx =

r
2�
a

(137)

Translate x ! x � b : Z

1R
e� a

2 (x � b)2
dx =

r
2�
a

(138)

i.e. Z

1R
e� a

2 x 2 + bxdx =

r
2�
a

e
1
2

b2
a (139)

Multiply: Z

1R n
e� 1

2

P n
1 ak x 2

k + bk x k dn x =
Y

k

r
2�
ak

e
1
2

P n
1

b2
k

a k (140)

Simplify:
Z

1R n
e� 1

2 (x;Ax )+( b;x ) dn x =

s
(2� )n

det (A)
e

1
2 (b;A � 1 b) (141)

Continue analytically and normalize:

C (� ) �

s
det (A)
(2� )n

Z

1R n
e� 1

2 (x;Ax )+ i ( �;x ) dn x (142)

= e� 1
2 ( �;A � 1 � ) (143)

is characteristic function of a probability measure on1Rn , with density

� (x) =
� p

2�
� � n

e� 1
2 (x;Ax ) (144)

wheneverA is a positive symmetric matrix.

Problem 7 Compute the characteristic function of the Dirac measure� a on
R1:

Problem 8 Let p be the restriction of the Lebesgue measure to the interval from
minus one to one. Compute its characteristic function.

Example 7 ("Queueing"):
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Let P(n; t ) be the probability to have n people waiting at the bus stop at
time t after departure of the previous one, andp(n ! n+1 in � t) the probability
for the arrival of one more person in the time interval � t.

We suppose that for small � t

1.
p(n ! n + 1 in � t) = k � � t (145)

2.
p(n ! n + 2 in � t) = 0 (etc.) : (146)

3. Also postulate
P(0; 0) = 1 : (147)

Now we can determineP(n; t ) as follows:

P(n; t + � t) (148)

= P(n � 1; t)p(n � 1 ! n in � t) (149)

+ P(n; t ) (1 � p(n � 1 ! n in � t)) (150)

= P(n; t ) (1 � k � � t) + P(n � 1; t) � k � � t (151)

hence have

P(n; t + � t) � P(n; t )
� t

= k � (P(n � 1; t) � P(n; t )) (152)

or in the limit of � t ! 0 the di�erential equation

dP(n; t )
dt

= k � (P(n � 1; t) � P(n; t )) : (153)

We solve it using the characteristic function

CN (� ; t) � E
�
ei�N �

=
1X

n =0

ei�n P(n; t ): (154)

It obeys the di�erential equation

d
dt

CN (� ; t) =
1X

n =0

ei�n d
dt

P(n; t ) (155)

= k
1X

n =0

ei�n (P(n � 1; t) � P(n; t )) (156)

= k
�
ei� � 1

� 1X

n =0

ei�n P(n; t ) (157)

= k
�
ei� � 1

�
CN (� ; t): (158)
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Solution:
CN (� ; t) = c � ek(ei� � 1)t (159)

and the constant c is

CN (� ; 0) = c =
1X

n =0

ei�n P(n; 0) (160)

= P(0; 0) = 1 (161)

So

CN (� ; t) = ek(ei� � 1)t = e� kt
1X

n =0

(kt )n

n!
ei�n ; (162)

and comparing coe�cients with equation (154), we obtain the "Poisson
distribution with intensity k"

P(n; t ) = e� kt (kt )n

n!
: (163)

Now we can e.g. compute the probability for an even number of people
waiting:

X

n even

P(n; t ) = e� kt
1X

n =0

(kt )2n

(2n)!
= e� kt 1

2

�
ekt + e� kt �

=
1
2

�
1 + e� 2kt �

:

(164)

Characteristic functions are a useful description of measures. How do I know
that some function is the characteristic function of a measure?

Note its properties:

1. Normalization:

C(0) =
Z

Rn
dm(x) = m (
) = M < 1 (165)

2. Continuity near � = 0 :

C(� ) � m (
) =
Z

Rn

�
ei ( �;x ) � 1

�
dm(x) (166)

=
Z

Rn
(cos ((�; x )) � 1) dm(x) (167)

+ i
Z

Rn
sin ((�; x )) dm(x) (168)

Using dominated convergence we may exchange limits and integral and
see that, for � ! 0 the rhs vanishes.
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3. "Positive De�niteness": let a1; : : : ; an be complex numbers, and� 1; : : : ; � n

real vectors, then we always have

X

k;l

a�
k al C(� k � � l ) =

Z

1R n

�
�
�
�
�

X

l

al ei ( � l ;x )

�
�
�
�
�

2

dm(x)� 0 (169)

These hold for all characteristic functions. Conversely

Theorem 8 (Bochner). Any normalized function, continuous at zero and pos-
itive de�nite

C : 1Rn ! 1C (170)

is the characteristic function of a �nite measure on the Borel-Algebra B (1Rn ) :

2.7.1 Properties of characteristic functions

1. Products of characteristic functions are again characteristic functions

C(� ) �
Y

CYi (� ) =
Y

i

Z
ei�y dpYi (y) (171)

=
Z

ei�
P

i y i
Y

i

dpYi (yi ) (172)

I.e., this is the characteristic function of the random variable

Y =
X

i

Yi (173)

with independent Yi :

2. Positive linear combinations of characteristic functions are characteristic
functions of �nite measures. For ai > 0 have

Ci $ � i (174)
X

i

ai Ci (� ) $
X

i

ai � i (175)

3. For Gauss and Poisson measures have: for allr > 0; Cr is again a Gauss
resp. a Poisson characteristic function. In such a case we speak of "in-
�nitely divisible" distributions and random variables. Reason:

For r = 1=n, n > 0 set

(CY (� ))1=n = CX (� ): (176)

Then
CY (� ) = ( CX (� ))n ; (177)

i.e.
Y =

X

i

X i (178)

with independent, equally distributed random variables X i :
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2.8 Law of Large Numbers and Central Limit Theorem

Now let us have a look at two items of probabilistic "folk lore":

1. The larger the number of observations, the "better the statistics".

2. For large data sets the 
uctuations around the average follows a Gaussian
"bell curve".

These notions were subject of early investigations even in the 18th century
but are of such central importance in theory and applications that results have
been re�ned and extended ever since:

1. The law of large numbers from Bernoulli 1713 to Kolmogorov 1928.

2. The central limit theorem of de Moivre 1733 via Gau� ("error calculus")
all the way to Feller, L�evy, Khinchin et al..

2.8.1 The law of large numbers

In the simplest of setting both theorems consider sequencesX k of independent
and equally distributed random variables, think of the repeated throws of dice.

With arithmetic mean

An �
1
n

nX

k=1

X k : (179)

Do not confuse this with the expectation; An = An (! ) is a random variable ,
just as the X k = X k (! )!

Essentially the LLN says that for large n the random variablesAn converge
to a constant, more precisely

An (! ) ! E (X k ) : (180)

Dice: for large n the arithmetic mean of n throws will get closer and closer to
the constant averageE (X k ) = 3 1

2 ; the bigger n, the less the 
uctuations.

Theorem 9 (Law of Large Numbers) Let X k be independent and equally dis-
tributed random variables with �nite moments m1and m2 and

An �
1
n

nX

k=1

X k (181)

Then have
p(f ! : jAn (! ) � m1j > " g) !

n !1
0: (182)

Note �rst that

E (An ) =
1
n

nX

k=1

E (X k ) =
1
n

nm1 = m1: (183)
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Hence the probability p above is what is estimated by the Tchebychev inequality:

p(f ! : jAn (! ) � m1j > " g) <
� 2 (An )

"2 : (184)

Hence must show
� 2 (An ) !

n !1
0 (185)

� 2 (An ) = E
�

(An (! ) � m1)2
�

= E

0

@

 
1
n

nX

k=1

(X k � m1)

! 2
1

A

=
1
n2

nX

k;l =1

E ((X k � m1) (X l � m1)) :

Independence of the (X k � m1) implies

E ((X k � m1) (X l � m1)) = E (X k � m1) E (X l � m1) = 0 : (186)

So

� 2 (An ) =
1
n2

nX

k=1

E ((X k � m1) (X k � m1)) (187)

=
1
n2 n� 2 (X k ) =

1
n

� 2 (X k ) !
n !1

0: (188)

Another approach is via characteristic functions and will lead us to the
central limit theorem. As before the X k are equally distributed, for simplicity
we setm1 = 0 : Then their characteristic function

CX k (� ) = E
�
eiX k

�
=

X (i� )n

n!
E (X n

k ) = 1 � � 2 � 2

2!
+ : : : (189)

and

CA n (� ) = C 1
n

P n
1 X k

(� ) = E
�

ei �
n

P n
1 X k

�
=

Y

k

E
�

ei �
n X k

�

=
Y

k

CX k (
�
n

) �
�

1 � � 2 � 2

2n2

� n

� e� � 2 � 2
2n !

n !1
1:

CA n (� ) !
n !1

1 implies pA n !
n !1

� 0; i.e.

An !
n !1

0 (190)

or in general:
An !

n !1
m1: (191)
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2.8.2 The central limit theorem

We consider once more independent and equally distributed random variables
X k with �nite moments m1 and m2; without loss of generality we �x E (X k ) =
m1 = 0 : We have seen that then the 
uctuations (around zero) of the arithmetic
mean

An �
1
n

nX

k=1

X k (192)

go to zero. In fact

CA n (� ) � e� � 2 � 2
2n (193)

corresponds to the probability density

� (x) = const: � e� n� 2

2 � 2 ; (194)

a more and more narrow bell curve asn ! 1 .
A Gauss distribution is obtained for n ! 1 ; if we amplify the 
uctuations

by a factor
p

n; thus we consider

Yn =
p

nA n =
1

p
n

nX

k=1

X k : (195)

If we now investigate its characteristic function as before, we �nd

CYn (� ) = C 1p
n

P n
1 X k

(� ) = E
�

ei �p
n

P n
1 X k

�
=

Y

k

E
�

ei �p
n

X k
�

=
Y

k

CX k (
�

p
n

) �
�

1 � � 2 � 2

2n

� n

� e� � 2 � 2
2 (196)

i.e.

Yn =
1

p
n

nX

k=1

X k � N (0; � 2):

2.9 Simulation of random variables

2.9.1 Simulation of Gaussian Random Variables

Use the central limit theorem!
Let X 1; : : : ; X 12 be 12 independent random variables, with values uniformly

distributed in the interval [0 ; 1], i.e.. for 0 � ai � bi � 1 have

p(f ! : X i 2 bai :bi cg) =
Y

i

(bi � ai ) : (197)

Set

Y (! ) =
12X

1

X i (! ) � 6: (198)
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Claim: Y is approximately normally distributed, with mean 0 and variance
� 2 = 1

Y � N (0; 1): (199)

Proof. Have

Y (! ) =
1

p
12

12X

1

Z i (! ) (200)

with independent and equally distributed

Z i =
p

12
�

X i �
1
2

�
: (201)

For them we compute

E (Z i ) =
p

12
�

E (X i ) �
1
2

�
= 0 (202)

and

E
�
Z 2

i

�
= 12

�
E

�
X 2

i

�
�

1
4

�
: (203)

E
�
X 2

i

�
=

Z 1

0
x2dx =

1
3

(204)

so that

E
�
Z 2

i

�
= 12

�
1
3

�
1
4

�
= 1 : (205)

I.e. by the central limit theorem,

1
p

n

nX

1

Z i (! ) � N (0; 1): (206)

2.9.2 Simulation of general continuous distributions

Again we use a standard random number generator;X will have the distribution
density

� X = I [0;1] (207)

i.e. the distribution function

Fx (s) =

8
<

:

0 s < 0
s s 2 [0; 1]
1 s > 0

(208)

Consider now a strictly increasing function G:

G : 1R ! b 0; 1c %% (209)
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We can invert it on the unit interval:

G� 1 : b0; 1c ! 1R, (210)

and we now form the random variable

Y (! ) = G� 1 (X (! )) : (211)

What is its distribution function?

FY (x) = p(f ! : Y (! ) < x g) (212)

= p
��

! : G� 1 (X (! )) < x
	�

(213)

= p(f ! : X (! ) < G (x)g) (214)

= FX (G (x)) = G (x) ; (215)

i.e. the random variable we constructedY (! ) = G� 1 (X (! )) has the distribu-
tion function G.

Problem 9 Consider the routine
10 x= RND
20 y= tan � (x � 1=2)
30 G�T� 10
What is the probability density of the valuesy it produces?

3 Generalized functions (Distributions)

Refs.: [1][4][6][9]

3.1 Introduction

We know functions �rst of all as mappings such as

' : Rn ! R (216)

' : x ! ' (x) (217)

Lebesgue-measurable functions' also play another role: they produce mappings
T' from ("test"-) functions f onto R:

T' : f !
Z

' (x)f (x)dn x (218)

In this sense we de�ne: distributions are continuous linear functionals on
certain spaces of di�erentiable ("test"-)functions.

Example 8

T' : f !
Z

' (x)f (x)dx (219)

29



More general linear mappings such as e.g.

T : f ! f (0) (220)

are not generated by functions' , hence the name "generalized functions".
Applications: solving PDEs, particularly in the mathematical physics, elec-

trodynamics, quantum �eld theory.

3.2 Test function spaces and distributions

In what follows we shall focus on linear subspaces ofC1 (Rn ); the arbitrarily
often continuously di�erentiable real- or complex valued functions.

3.2.1 The space D:

De�nition 14 By D(1Rn ) one denotes the space of functions fromC1 (Rn )
which vanish outside some bounded region. We can de�ne convergencef n ! f
to be equivalent with

1. all f n vanish outside some (common!) bounded domainB � 1Rn ; and
2. inside B the f n and all their derivatives converge uniformly.

Linear functionals T are called continuous if

f n ! f ) T f n ! T f: (221)

De�nition 15 The set D 0 of all continuous functionals on D (the "dual "
space) is called the "space of distributions overD".

Notation:
T f = hT; f i (222)

("dual product").

Exercise 1

f (x) =
�

e� a 2

a 2 � x 2 for x2 < a 2

0 otherwise
(223)

is in D; likewise

h(x) � f (x)g(x) for any g 2 C1 (Rn ):

Exercise 2 ("Dirac distribution") Show that

h� a ; f i � f (a) (224)

de�nes a distribution � a 2 D 0
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Figure 2: A test function in D(R)

� a can be represented by a measure:

h� a ; f i =
Z

f (x)d� a(x) (225)

where � a is the Dirac measure concentrated ona 2 Rn . Notation:
Z

� (x � a)f (x)dx = f (a) (226)

Approximation e.g. by Gauss functions

� " (x � a) =
�

1
p

2�"

� n

e� ( x � a ) 2

2" : (227)

For small " Z
� " (x � a)f (a)dx � f (a); (228)

more precisely

lim
" ! 0

Z
� " (x � a)f (x)dx = f (a); (229)

if f is a test function. But there is no (Lebesgue integrable) limit func-
tion �; such that (226) holds.

More generally a Borel measure� produces a distribution

hT; f i =
Z

f (x)d� (x) (230)
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if � (B ) is �nite for bounded regions B . Such distributions are "positive", in
the sense that

f � 0 ) h T; f i � 0 (231)

and one can show conversely that all positive distributions have a representation
(230) with a suitable locally �nite measure � .

Exercise 3
Tx : f ! f 0(x) (232)

is also a continuos linear functional on the spaceD(R):

"Regular" distributions: If g is Borel-integrable on bounded regions ("locally
integrable"), then

hG; f i �
Z

g(x)f (x)dx (233)

de�nes a distribution G 2 D: If g is non-negative, thenG is positive.
In particular the "Heaviside function"

�( x) =
�

1 for x> 0
0 otherwise

(234)

is a distribution � 2 D 0(R):

h� ; f i =
Z

�( x)f (x)dx =
Z 1

0
f (x)dx: (235)

3.3 The Schwartz Space S(Rn )

De�nition 16 Consider functions which, with all their derivatives, decrease
faster than polynomially at in�nity:

S(1Rn ) =
�

f 2 C1 (1Rn ) :
�
�xk D pf (x)

�
� < const k;p 8k; p

	
(236)

Convergencef n ! f shall mean:
1. all f n obey estimates

�
�xk D pf n (x)

�
� < const k;p 8x (237)

(independent of n!)
2. Inside any bounded domainB the f n and all their derivatives converge

uniformly.
For D and S one can show that all limit functions are again in D resp. S :

D and S are closed.

Example 9 :
f (x) = e� ax 2

a > 0
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1. If f is a test function, then so are all its derivatives

f (n ) (x) =
dn

dxn f (x):

Assume we expand functions in terms of an orthogonal basis of Hermite
functions

f (x) =
X

� n en (x)

with

en (x) = cn
dn

dxn e� 1
2 x 2

:

We get the di�erentiability and rapid decrease that are required of test functions
if we admit only rapidly decreasing sequences of coe�cients (� n ) : In fact we
have

f 2 S(R) $
X

nk � 2
n < 1 for all k,

whereasf 2 L 2(R) $
X

� 2
n < 1 :

Exercise 4 Let H be the harmonic oscillator Hamiltonian. Show that


 

�
�H k

�
�  

�
< 1

for all k > 0 if and only if
 2 S(R):

De�nition 17 The dual spaceS0 of continuous linear functionals on S is called
the "space of tempered distributions" or Schwartz distributions.

Remark 2 1. D 0 and S0 are vector spaces,if we de�nea� 1 + b� 2 via

ha� 1 + b� 2; f i = ah� ; f i + bh� 2; f i (238)

2. Have D � S: And f n ! 0 in D , implies f n ! 0 in S; so that S0 � D 0:

Example 10
g(x) = ex 2

(239)

is a regular distribution G 2 D 0, but not in S0.

De�nition 18 If for a sequence� n of (tempered) distributions, and for all test
functions f

lim n h� n ; f i = h� ; f i (240)

then we say that� n "converges weakly to the (tempered) distribution� ".

33



Weak convergence inS0 implies weak convergence inD 0: For the spacesS0

and D 0 one can show that convergence of the lhs (for all test functions f) implies
the existence of a limit distribution �: the spaces S0 and D 0 are "complete".

If for all test functions f which are zero outside an open setU we �nd

hT; f i = 0 (241)

then we say that "T vanishes onU".
If a point a has no neighborhood of on whichT vanishes, thena is called an

"essential point of T".
The set of all essential points is called the "support ofT".

Example 11 The support of the Dirac-distribution � a is the point a 2 Rn :

Can show: if the support of a distribution T is just one point a 2 Rn then
it is a �nite linear combination of derivatives of the Dirac distribution.

T =
NX

ak � (k )
a (242)

Any distribution with bounded support is tempered.

3.4 Distribution Calculus

Have
1.

ha� 1 + b� 2; f i = ah� 1; f i + bh� 2; f i (243)

2. � n ! � if lim n h� n ; f i always exists:

lim n h� n ; f i = h� ; f i (244)

3. Translation and scaling of variablesas for regular distributions:
a) Translation

h� � a ; f i =
Z

' (x � a)f (x)dx =
Z

' (x)f (x + a)dx = h� ; f + a i (245)

the latter expression de�nes a continuous linear functional � � a

b) Scaling

h� :a ; f i =
Z

' (ax)f (x)dx =
1

jajn

Z
' (y)f (

y
a

)dy =
1

jajn
h� ; f :1=a i (246)
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3.4.1 Di�erentiation

We de�ne
h� 0; f i � �h � ; f 0i (247)

Note:
a) for regular di�erentiable distributions this is the usual derivative:

h� 0; f i = �
Z

' (x)f 0(x)dx (248)

=
Z

' 0(x)f (x)dx (249)

b) the rhs de�nes a continuous linear functional for any given distribution
� 2 D 0, i.e., all distributions are arbitrarily often di�erentiable.

Example 12 What is the derivative of the step function?

h� 0; f i = �
Z

�( x)f 0(x)dx = �
Z 1

0
f 0(x)dx (250)

= f (0) = h� 0; f i (251)

The derivative of the Heaviside function is the delta function. Now we di�eren-
tiate the delta function:

h� 0
0; f i = �h � 0; f 0i = � f 0(0) (252)

Example 13 Let

hG; f i =
Z

log jxj f (x)dx (253)

Then

hG0; f i = �
Z

log jxj f 0(x)dx (254)

= � lim " ! +0

� Z � "

�1
+

Z 1

"

�
log jxj f 0(x)dx (255)

= lim " ! +0

� Z � "

�1
+

Z 1

"

�
1
x

f (x)dx = P
Z

1
x

f (x)dx (256)

i.e. in the sense of distributions

(log jxj)0 = P
1
x

(257)

where the distribution on the rhs is Cauchy's "principal value integral".
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Likewise one can de�ne all higher inverse powers as (higher derivatives of
regular) distributions

x � n =
(� 1)n � 1

(n � 1)!
(log jxj)(n ) (258)

the lhs will not be integrable; the derivative on the rhs is well de�ned in the
sense of distributions!

� For partial derivatives of distributions on R n have

@2�
@xi @xk

=
@2�

@xk @xi :
(259)

Limit and Di�erentiation can always be interchanged!

Proof: Let � = lim n � n

hlim
n

(� 0
n ) ; f i = lim

n
h� 0

n ; f i = � lim
n

h� n ; f 0i (260)

= �h � ; f 0i = h� 0; f i (261)

= h
�

lim
n

� n

� 0
; f i (262)

Exercise 5 Compute the derivative of the distribution

T : f !
Z

jxj f (x)dx:

3.4.2 Multipliers

Contrary to usual functions, multiplication of generalized functions - ie. of linear
functionals - does not make sense a priori. However one can try to generalize
from the case of regular distributions:

h� ; � � f i =
Z

' (x)� (x)f (x)dx � h � � � ; f i (263)

For which multiplicator functions � might this work?
Surely whenever� � f is in D or. S respectively and the lhs is a continuous

functional on D resp. onS .

Theorem 10 1. Let � be a distribution and � 2 C1 : Then the mapping

� � � : D (1Rn ) ! K (264)

� � � : f ! h � ; � � f i (265)

is a distribution.
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2. Let � be a tempered distribution and� 2 C1 such that all its derivatives
are polynomially bounded, i.e.

�
�D k � (x)

�
� < p k (x) (266)

for some polynomialspk : Then the mapping

� � � : S(Rn ) ! K (267)

� � � : f ! h � ; � � f i (268)

is a tempered distribution.

3.4.3 Convolutions

The composition of two functions

(f � g) (x) =
Z

f (x � y)g(y)dy (269)

is called "convolution". Have

(f � g) (x) =
Z

f (x � y)g(y)dy (270)

=
Z

f (z)g(x � z)dz (271)

= ( g � f ) (x): (272)

the convolution is commutative.
How can we de�ne the convolution

� � f (273)

of a distribution and a test function?
Motivation: Consider partial di�erential equations, e.g. in physics, such as

X
ak D k f (x) = � (x) (274)

to be solved for functions f; for given ak ; � (x). Instead of doing this for each
given � , look for the "fundamental solution" ' of

X
ak D k ' (x) = � (x) (275)

and compute for "any" � the solution

f = ' � � (276)

=
Z

' (x � y)� (y)dy (277)

37



because
X

ak D k f (x) =
Z X

ak D k ' (x � y)� (y)dy (278)

=
Z

� (x � y)� (y)dy (279)

= � (x): (280)

Hence want to study convolutions with generalized functions.
Again we start with a regular distribution for inspiration.

(� � f ) (x) =
Z

' (x � y)f (y)dy (281)

=
Z

' (� y)f (y + x)dy (282)

=
Z

' (y)f (x � y)dy (283)

=
D

� ;
�

f (x )
�E

(284)

where f (x ) (y) � f (x � y) 2 D; i.e. the rhs exists forany distribution � and so
de�nes the convolution.

Example 14 Convolution with the delta function

(� a � f ) (x) =
D

� a ; f (x )
E

= f (x � a): (285)

Properties:
� � f 2 C1 (Rn ): For n = 1:

(� � f ) (x + ") � (� � f ) (x)
"

(286)

=
1
"

�D
� ; f (x + " )

E
�

D
� ; f (x )

E�
!

D
� ; @x f (x + " )

E
(287)

Higher derivatives by iteration.

Important approximations for the Delta function � 0 are

lim
"

1
p

2�"
e� x 2

2" ;
1
�

lim
"

"
x2 + "2 ; lim

n

sinnx
�x

(288)

For n=1 (one independent variable) any distribution can be written as boundary
value of analytic functions:

Theorem 11 Let � 2 D 0. Then there is a function g, analytic outside the
support of � , such that

h� ; f i = lim
" ! +0

Z 1

�1
(g(x + i" ) � g(x � i" )) f (x): (289)
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If � has bounded support then

g(z) =
1

2�i

�
� ;

1
� � z

�
: (290)

Example 15

1
x � i0

� lim
" ! +0

1
x � i"

= lim
" ! +0

d
dx

log (x � i" ) (291)

=
d

dx
(log jxj � i�� (� x)) =

P
x

� i�� (x) (292)

Hence
P
x

=
1
2

lim
" ! +0

�
1

x + i"
+

1
x � i"

�
(293)

and

� (x) = �
1

2�i
lim

" ! +0

�
1

x + i"
�

1
x � i"

�
(294)

In the latter case the analytic representation is given by

g(z) = �
1

2�iz
; (295)

and for P/x by

g(z) =
� 1

2z for Im z > 0

� 1
2z for Im z < 0

: (296)

3.4.4 Fourier transform

On the spaceS(Rn ) of Schwartz test functions we consider the linear transfor-
mation

F : f !
~
f (297)

with
~
f (p) =

1

(2� )n= 2

Z

Rn
f (x)eipx dn x: (298)

Clearly this Fourier transform
~
f is also arbitrarily often di�erentiable, with

D k
~
f (p) =

1

(2� )n= 2

Z

Rn
f (x) ( ix )k eipx dn x; (299)

writing

(ix )k �
nY

l =1

(ix l )
k l (300)

and we have

pk
~
f (p) =

1

(2� )n= 2

Z

Rn
f (x) ( � iD )k eipx dn x =

1

(2� )n= 2

Z

Rn
(iD )k f (x)eipx dn x:

(301)
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Theorem 12
F : S(Rn ) ! S(Rn ) (302)

Proof. (Exercise!)

Theorem 13 The Fourier transform is continuous on S(Rn ) :

f n ! f ) ~f n ! ~f (303)

The inverse Fourier transform is given by

F � 1 :
~
f ! f (304)

and one �nds

f (x) =
1

(2� )n= 2

Z

Rn

~
f (p)e� ipx dn p: (305)

3.4.5 Fourier transforms of distributions

For regular distributions

D
~G; f

E
=

Z
dy~g(y)f (y) (306)

=
1

(2� )n= 2

Z
dyf (y)

Z
dxeixy g(x) (307)

=
Z

dxg(x)
1

(2� )n= 2

Z
dyf (y)eixy (308)

Z
dxg(x) ~f (x) (309)

=
D

G; ~f
E

: (310)

Extend this to general tempered distributions G ( ~f is continuous!).

Remark 3 The important relation
Z

dxg(x) ~f (x) =
Z

dy~g(y)f (y)

is the "Parseval Formula", holding not only for functions from S(Rn ) but when-
ever

f; g 2 L 2(Rn ; dx) (311)

i.e. when Z
dx jf (x)j2 < 1 (312)

and Z
dx jg(x)j2 < 1 : (313)
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Example 16 1.

D
~� 0; f

E
=

D
� 0; ~f

E
= ~f (0) =

1

(2� )n= 2

Z
f (x)dx (314)

i.e. ~� 0 is a regular distribution:

~� 0(x) =
1

(2� )n= 2
(315)

Likewise
~1 = (2 � )n= 2 � 0 (316)

2. The Heaviside distribution �
D

~� ; f
E

=
D

� ; ~f
E

(317)

=
Z 1

0
dp~f (p) (318)

=
1

p
2�

Z 1

0
dp

Z 1

�1
dxeipx f (x) (319)

Note: Here you may not switch the order of integrations! In

1
p

2�

Z 1

�1
dx

� Z 1

0
dpeipx

�
f (x) (320)

the integral over p is divergent! In other words: ~� is not a regular distribution.
We use instead the following trick (Regularization):

D
~� ; f

E
=

1
p

2�

Z 1

0
dp

Z 1

�1
dxeipx f (x) (321)

= lim
" ! +0

1
p

2�

Z 1

0
dp

Z 1

�1
dxeip (x + i" ) f (x) (322)

= lim
" ! +0

Z 1

�1
dx

�
1

p
2�

Z 1

0
dpeip (x + i" )

�
f (x) (323)

where

1
p

2�

Z 1

0
dpeip (x + i" ) =

1
i (x + i" )

eip (x + i" )
p

2�

�
�
�
�

1

p=0
(324)

=
1

p
2�

i
x + i"

: (325)

so that �nally
~�( x) =

i
p

2�
lim

" ! +0

1
x + i"

: (326)
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Exercise 6 Compute the Fourier transforms of the following distributions on
R1

1.
T = � a

2.
T : f ! f 0(a)

3.

T : f !
Z

xf (x)dx

3.4.6 Fourier transform of products and convolutions

The Fourier transform for the product of two test functions from S(1Rn )

h(x) = f (x)g(x) (327)

is

~h(p) = (2 � ) � n= 2
Z

dxeipx f (x)g(x) =
1

(2� )3n= 2

Z
dxeipx

Z
dqe� iqx

Z
dke� ikx ~f (q)~g(k)

=
1

(2� )n= 2

Z
dq

Z
dk ~f (q)~g(k)

1
(2� )n

Z
dxei (p� q� k )x (328)

=
1

(2� )n= 2

Z
dq

Z
dk ~f (q)~g(k)� (p � q � k) =

1

(2� )n= 2

Z
dk ~f (p � k)~g(k)

ffg =
1

(2� )n= 2
~f � ~g: (329)

Likewise one shows
]f � g = (2 � )n= 2 ~f � ~g: (330)

The same rules extend to products and convolutions of distribution whenever
these are well-de�ned.

3.4.7 Solving linear PDEs

Example 17 �
� � + m2�

g(x) = � (x) (331)

where

� =
nX

k=1

@2

@x2k
(332)

the "Laplace-Operator". Fourier transform produces
�
k2 + m2�

~g(k) = ~� (k) = (2 � ) � n= 2 (333)
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Hence
~g(k) = (2 � ) � n= 2 1

k2 + m2 : (334)

By inverse Fourier transform we get

g(x) = (2 � ) � n
Z

1
k2 + m2 e� ikx dn k: (335)

For n=3 explicitly :

g(x) = (2 � ) � 3
Z 2�

0
d'

Z 1

� 1
dcos �

Z 1

0
dkk2 1

k2 + m2 e� ik jx j cos � (336)

= (2 � ) � 2
Z 1

0
dkk2 1

k2 + m2

1
� ik jxj

�
e� ik jx j � eik jx j

�
(337)

=
1

2i (2� )2 jxj

Z 1

�1
dkk

1
k2 + m2

�
eik jx j � e� ik jx j

�
(338)

=
1

2i (2� )2 jxj

Z 1

�1
dkk

1
k2 + m2 eik jx j + c:c: (339)

This integral we compute by closing the integration path in the upper half plane.
There the integrand has a pole of 1. degree atk = im . Hence

g(x) =
1

2i (2� )2 jxj
2�i Res

k
(k + im ) (k � im )

eik jx j

�
�
�
�
k= im

+ c:c: (340)

=
1

4� jxj
im
2im

e� m jx j + c:c: =
1

4� jxj
e� m jx j : (341)

Example 18 The inhomogeneous equation
�
� � + m2�

f (x) = h(x): (342)

Fourier transform:
�
k2 + m2� ~f (k) = ~h(k) (343)

~f (k) =
1

k2 + m2
~h(k) = (2 � )n= 2~g(k)~h(k): (344)

Hence

f = g � h (345)

f (x) =
Z

1
4� jx � yj

e� m jx � y j h(y)d3y: (346)

Example 19 " Heat Equation"

@t g(x; t ) =
�
2

g(x; t ) (347)
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with "initial value"
g(x; 0) = � (x): (348)

Fourier transform:

@t
~f (k; t ) = �

k2

2
~f (k; t ) (349)

~g(k; 0) = (2 � ) � n= 2 (350)

is solved by

~g(k; t ) = e� k 2
2 t ~g(k; 0) = (2 � ) � n= 2e� k 2

2 t :: (351)

Hence

g(x; t ) = (2 � ) � n
Z

e� k 2
2 t e� ikx dn k =

nY

r =1

(2� ) � 1
Z

e�
k 2

r
2 t e� ik r x r dkr(352)

=
nY

r =1

(2� ) � 1

r
2�
t

e�
k 2

r
2 t = (2 �t ) � n= 2e� k 2

2 t : (353)

The " heat kernel" g, fundamental solution of the heat equation, describes the
distribution of heat in a linear rod at time t, which for t = 0 was concentrated
at x = 0 (Dirac distribution), it is a Gauss distribution with width � =

p
t:

Heat spreads like the square root of time!

3.4.8 Random walk and Brownian motion

Construction of the Wiener process as limit of random walks.
The drunk on the street randomly makes steps either forward or back. What

is the probability pt (x) to �nd him at the the point x at time t?
Or equivalently: in a coin toss I either win or lose one Peso each time. What

will be my wealth at time t?
Evidently

pt +1 (x) =
1
2

(pt (x + 1) + pt (x � 1)) ; (354)

hence

pt +1 (x) � pt (x) =
1
2

(pt (x + 1) � pt (x) � (pt (x) � pt (x � 1))) : (355)

Now we rescale the time and space steps

t + 1 ! t + � t (356)

x + 1 ! x + � x (357)

and set
(� x)2 = � t: (358)

Then our equation becomes

pt +� t (x) � pt (x)
� t

=
1
2

pt (x +� x ) � pt (x )
� x � pt (x ) � pt (x � � x )

� x

� x
: (359)
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For (� x)2 = � t ! 0 this turns into the heat equation (347)

d
dt

pt (x) =
1
2

d2

dx2 pt (x) (360)

with initial value
p0(x) = � (x); (361)

all paths start at x=0. Solution:

pt (x) = (2 �t ) � 1=2e� k 2
2 t : (362)

Successive coin 
ip games where one either wins or loses one "Peso" will
produce such a random "walk" of ups and downs. The following �gures show
an such up-and-down random walk as a function of time, scaled successively,
from 4 t = 1 to 0 :1; 0:01; 0:001:

Note that the last of the rescalings looks pretty much like the previous one:
we observe the "self-similarity" which is typical of fractals!

Also a simple calculation would show that the "paths" of successive graphs
become longer and longer, in fact in�nitely long in the limit of many rescalings.
Finally, note that ups and downs alternate more and more closely: The limiting
path - while still continuous - would fail to have a tangent or derivative!
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We could also have gotten

pt (x) = (2 �t ) � 1=2e� k 2
2 t (363)

from the central limit theorem!. The random walker at time [ t] is at

X (t) =
[t ]X

k=1

Yk ; (364)

where the Yk are independent, identically distributed random variables, with

prob(Yk = � 1) = 1=2 (365)

and with � Yk = 1 :
Scaling produces a process

X n (t) =
1

p
n

[nt ]X

k=1

Yk �

p
t

p
[nt ]

[nt ]X

k=1

Yk !
n !1

p
tN (0; 1) (366)

= N (0; � 2 = t) (367)

with the density

� (x; t ) =
1

p
2�� 2

e� x 2

2 � 2 =
1

p
2�t

e� x 2
2 t : (368)

We have calculated the (Gaussian) probability distribution for the position
of a (1-dimensional) Brownian path at a �xed time t > 0; a snapshot so to
speak. To discuss the statistics of pathsas a wholewe would need to start from
a sample space


 = C ([0; T])

of continuous functions of "time" t and attribute a probability ("Wiener mea-
sure") to suitable sets of such pathsB = f B (t) : 0 < t < T g.

We would be led to its characteristic properties such as

E (B (t)) = 0 8t > 0

and
E (B (s)B (t)) = min ( s; t) :

This is the starting point for a mathematical construction of the Wiener
process and for large parts of what is called "Stochastic Analysis". A central
topic is Ito's theory of stochastic integrals:

Z
X (t)dB(t)

for which a Riemann sum approximation
Z

X (t)dB(t) �
X

X (� k ) (B (tk+1 ) � B (tk ))

is complicated by the fact that it depends on the choice of� k :

46



�
� k = tk

produces theIto integral

� a midpoint choice

� k =
tk + � k+1

2
gives a di�erent result, the so-called Stratonovich integral.

On these notions there is then built the theory of stochastic di�erential
equations such as

dX (t) = �dt + �dB (t);

a shorthand for an integral equation

X (t) � X (0) =
Z t

0
� (X; s )ds +

Z t

0
� (X; s )dB(s);

involving those stochastic integrals.
A prototype (Ornstein-Uhlenbeck process) is given by

� = a(b� X )

� > 0 (const.)

i.e.
dX (t) = a(b� X (t))dt + �dB (t);

widely used in biological and �nancial modelling. It is "mean reverting", i.e. in
the absence of random perturbations �dB the �rst term on the rhs pushes X
towards its "mean value" b (a desirable feature if one wants e.g. to model the
long-term behavior of interest rates and their 
uctuations), in fact the solution
turns out to be

X (t) = b+ ( X (0) � b) e� at +
Z t

0
e� a( t � s) dB(s):

We shall not struggle with the de�nition of that stochastic integral but take a
di�erent approach to stochastic analysis, one where the sample space is not one
of Brownian paths but one of Brownian motion velocity, aka."white noise".
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In�nite Dimensional Analysis
The program:
Calculus, involving generalized functions, for in�nitely many variables, and

their applications
Central questions:

� What is a good set of independent coordinates?

� Calculus is about di�erentiation and integration. Di�erentiation carries
over rather straightforwardly as we shall see, but by what should we re-
place Lebesgue integration in infinite dimension?

Much speaks in favour of an in�nite dimensional Gaussian measure, the
"\Gaussian White Noise" . But we shall see that other in�nite dimensional
measure spaces occur naturally in certain applications. As a consequence we
shall proceed as follows:

� Gaussian White Noise Analysis

� Generalization: Non-Gaussian Measures

� A Special Case: Poisson Analysis

4 Gaussian White Noise Analysis

Recall Bochner's theorem for functions

c : Rn ! C

They are Fourier transforms of measures on the Borel algebra overRn if and
only if

1.
c(0) = 1

2. c is continuous in the vectors� .

3. Finally, for any complex a1; : : : ; an , and real vectors� 1; : : : ; � n

X

k;l

a�
k al c(� k � � l ) � 0: (369)

For in�nite dimensional vector spaces there are extension such as

Theorem 14 [6]. Any normalized continuous positive de�nite complex func-
tion C(f ) on test function spaceS(1Rn ) is the Fourier transform of a probability
measure� on distribution space S� (1Rn )

C(f ) =
Z

S �
ei h!;f i d� (! ):
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In this generalization of the Bochner theorem, the two spacesS(1Rn ) and
S� (1Rn ) arise as two di�erent in�nite dimensional extensions of the Euclidean
space 1Rn ; and one wonders why we could not just have used Hilbert space
functions in both cases.

It is rather simple and quite instructive to see why this cannot work. To
this end let us look at the �nite dimensional Gaussian density

� (x) dn x =

s
1

(2� )n e� 1
2 r 2

r n � 1drdSn :

Disregarding integration over the sphereSn , we focus on the radial density

� n (r ) � r n � 1e� 1
2 r 2

:

This is bell-shaped only forn = 1; graphically these densities look like this, for
n � 1 = 1; 4; 9; 64 :

As n becomes large, the probability densities� n (r ) are essentially concen-
trated near the surface of a sphereSn (R) with radius R =

p
n � 1:

Hence our limiting measure� will be zero for vectors of �nite length
r, i.e. for all vectors in Hilbert space . Professor Hida has often underlined
this point by saying: " � is concentrated onS1 (

p
1 ); on an in�nite dimensional

sphere with radius
p

1 " :
Technically this means the following. Expanding test functions in terms of

a basis, we put
f (x) =

X
� n en (x):
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We get the di�erentiability and rapid decrease that are required of test functions
if we choose Hermite functions as a base and admit only rapidly decreasing
sequences of coe�cients (� n ) : In fact we have

f 2 L 2(R) $
X

� 2
n < 1

whereas
f 2 S(R) $

X
nk � 2

n < 1

for all k > 0. Now let us expand the! :

! (x) =
X

! n en (x):

Our previous discussion tells us that the coe�cients ! n are not square summable
as would be the case for! in Hilbert space. Equivalently the functions ! (x) fail
to be square integrable: they are "generalized functions", with

h!; f i =
X

! n � n " = "
Z

f (x)! (x)dx:

The ! (x) on the right may fail to exist pointwise, but the sum is well de�ned
and �nite: the rapid decrease of the � n takes care of this even for unbounded
! n .

Now turn to "Gaussian White Noise" with the probability measure � on
distribution space S� (Rd) given by its Fourier transform

C(f ) = e�
�!
� 2
2 = e� 1

2

R
f 2 (x )dx =

Z

S �
ei h!;f i d� (! ):

This probability measure, de�ned on an in�nite dimensional linear space,
plays an important role in mathematics and physics.

Gaussian white noise models random events occurring independently at dif-
ferent points in time (and/or space). Informally we write

E (! (t)) � 0

E (! (s)! (t)) = � (s � t) :

Technically, we consider, for test functions f 2 S(R); the random variables
h!; f i as Gaussian, with mean zero and covariance

R
f (t)g(t)dt :

E (h!; f i ) � 0

E (h!; f i h!; g i ) =
Z

f (t)g(t)dt:

Exercise 7 Derive the two previous formulas from the knowledge of the WN
characteristic function.

Gaussian WN is intimately related to Brownian motion modelled by the
Wiener processB (t): Informally, white noise is the velocity of Brownian motion:

! (t) =
d
dt

B (t): (370)
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Exercise 8 For the random variables

B (t) �


!; 1[0;t ]

�

verify that they are Gaussian, with mean zero and covariance

E (B (s)B (t)) = min ( s; t) :

The L 2 space of square integrable functions

L 2 (d� ) � (L 2)

will be fundamental for our construction of (Gaussian) in�nite dimensional anal-
ysis.

Remark 4 A more general setting for Gaussian analysis may be based on a
"Gelfand triple"

N � H � N � (371)

of a Hilbert space H with an embedded nuclear spaceN and its dual N � ; and
a measure given via Bochner-Minlos onN � :

C(f ) = e� 1
2 hf;f i H =

Z

N �
ei h!;f i d� (! ):

4.1 Chaos Expansion

Ref.[hkps], Ch. 2.
Our goal is to get an explicit description of L 2-functions of white noise, i. e.

of nonlinear functionals
' 2 (L 2):

The strategy will be modelled on one-dimensional Gaussian analysis, where

' 2 L 2(R; e� 1
2 ! 2

d! )

i�
' (! ) =

X

k

ak hn (! )

with X

k

k!a2
k < 1 :

Recall that the Hermite polynomials arise when we construct polynomials in
! which are to be orthogonal with respect to the Gaussian measuree� 1

2 ! 2
d!:

They can be computed recursively:

hn (! ) = !h n � 1(! ) � (n � 1) hn � 2(! ):
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Polynomial expressions of white noise! will look like

' (! ) =
NX

n =0

Z
dn t ! (t1) : : : ! (tn ) f n (t1; : : : ; tn );

more precisely

' (! ) =
NX

n =0



! 
 n ; f n

�
;

and as in the one-dimensional case, terms of di�erent ordern will not be or-
thogonal to one another.

But now we replace the generalized functions! 
 n by : ! 
 n :; de�ned such
that we have an orthogonality relation

E
�


: ! 
 m :; f m
� 


: ! 
 n :; gn
��

=
Z

d� (! )


: ! 
 m :; f m

� 

: ! 
 n :; gn

�

= � mn n!
Z

dn tf n (t)gn (t)

= � mn n! (f n ; gn )SymL 2 (R n ) :

We could get these : ! 
 m : recursively by orthogonalizing monomials of in-
creasing order �a la Gram-Schmidt but here is a neat trick using "generating
functions". De�ne

e(f; ! ) � eh!;f i� 1
2 ( f ;f )

and calculate the (L 2) scalar product
 �

d
dx

� m

e(xf )

�
�
�
�
x =0

;
�

d
dy

� m

e(yg)

�
�
�
�
y=0

!

(L 2 )

= � mn n!(f; g )n

(Exercise!). Note that by its de�nition,
�

d
dx

� m
e(xf )

�
�
�
x =0

is of mth order in f

and of up to mth order in ! :

�
d

dx

� m

e(xf )

�
�
�
�
x =0

=
Z

dn t : ! (t1) : : : ! (tn ) : f (t1) : : : f (tn )

=


: ! 
 n :; f 
 n �

The generalized functions

: ! 
 n :2 SymS� (Rn )

are called "normal ordered polynomials" and obey a recurrence relation

: ! (t1) : : : ! (tn ) :=: ! (t1) : : : ! (tn � 1) : ! (tn )
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�
n � 1X

i =1

� (tn � t i ) :
n � 1Y

k6= i

! (tk ) : : (372)

In terms of distributions, orthogonality reads

E(: ! 
 n (s) :: ! 
 m (t) :) = � m;n

X

perm �

nY

i =1

� (si � t � ( i ) ):

For Fn 2 SymS(Rn ) we write



: ! 
 n :; Fn

�
=:

Z
dn tFn (t1; : : : ; tn ) : ! (t1) : : : ! (tn ) : :

(For the quantum �eld theorist this is exactly the de�nition of Wick polynomi-
als.)

Exercise 9 Calculate the generalized function: ! (s1) : : : ! (s4) : .

For

' (! ) =
1X

n =0



: ! 
 n :; Fn

�
;

using orthogonality, the L 2 norm of ' is calculated as

k' k2
L 2 (d� ) = E(' � ' ) =

1X

n =0

n!
Z

dn t jFn (t1; : : : ; tn )j2 (373)

and we may extend this expansion toFn 2 L 2(Rn ) by ( L 2) continuity.
It is not hard to show that such monomials span (L 2). Hence for

' 2 (L 2)

we have

' (! ) =
1X

n =0



: ! 
 n :; Fn

�
(374)

=
1X

n =0

Z
dn tFn (t1; : : : ; tn ) : ! (t1) : : : ! (tn ) : :

with

k' k2
(L 2 ) =

1X

n =0

n!
Z

dn t jFn (t1; : : : ; tn )j2

=
1X

n =0

n! kFn k2
SymL 2 (R n ;n !dn t ) :
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On the rhs of (373) we have a Fock space norm:

' 2
�
L 2�

� f Fn g 2 F =
M

n

Sym L2(Rn ; n!dn t):

This is the famous Gelfand-Ito-Segal isomorphismbetween the L2-space with
Gaussian measure� and symmetric or "Bose" Fock space:

L 2 (S� (R); d� ) '
1M

n =0

Sym L2(Rn ; n!dn t):

4.1.1 Recalling Fock Space:

For n = 0 have zero-particle vectorsF0 which are just constant multiples of the
vacuum state 
.

F0 = c


with
kF0k2 = jcj2 :

Together, they span the Fock space

F = f F : F = ( F0; F1; : : : ; Fn ; : : :)g

with norm

kF k2
F =

1X

n =0

n! (Fn ; Fn )L 2 :

Spanned by certain n-particle vectors, obtained from the vacuum by applying
creation operatorsa� (f ) n times to the vacuum:

	 n
�
f 
 n �

= ( a� (f ))n 
 :

CCR:

[a(f ); a(g)] = 0 = [ a� (f ); a� (g)]

[a(f ); a� (g)] = ( f; g )

Consider vectors

e(f ) =
1X

n =0

1
n!

(a� (f ))n 
 = ea � ( f ) 


with scalar product
(e(f ); e(g))F = e

R
f (x )g(x )dx : (375)

"Coherent states" (See e.g. [5]) are the corresponding unit vectors

	 = exp( �
1
2

jf j2)ea � ( f ) 
 :
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They are eigenvectors of the annihilation operatorsa(g):

a(g)e(f ) = ( g; f ) � e(f ) (376)

with eigenvalue (g; f ):

Exercise 10 Prove the formulas (375) and (376).

4.2 Smooth and Generalized Functionals

Recall the de�nition of test functions in �nite dimensional analysis:

f 2 S(R) i� jf jp < 1 for all p: (377)

where the jf jp p = 0 ; 1; 2; : : : are suitable increasing "Sobolev" norms; a popular
choice is

jf j2p =
Z �

�
�
�

�
�

d2

dx2 + x2 + 1
� p

f (x)

�
�
�
�

2

dx = jH pf j22

whereH is the harmonic oscillator Hamiltonian of quantum mechanics (suitably
normalized).

In analogy to this we shall de�ne a doubly in�nite sequence of increasing
norms for white noise functionals

k' k2
p;q =

1X

n =0

(n!)1+ � 2nq jFn j2p (378)

with

jFn j2p =
Z �

�
�
�
�

nY

k=1

�
�

d2

dx2
k

+ x2
k + 1

� p

Fn (x1; : : : ; xn )

�
�
�
�
�

2

dn x

for p; q > 0: For many applications, the most interesting cases are� = 0 ; 1:
With � = 0 define the space (S) of smooth functionals by

(S) =
n

' : k' kp;q < 1 for all p; q
o

and the space (S) � of generalized functionals (Hida distributions) as its dual:
(S) � (L 2) � (S) � : We note that this does not depend on the speci�c choice of
the norms in (378). The resulting Fn (t1; :::; tn ) are not only rapidly decreasing
and arbitrarily often di�erentiable in t, but also rapidly decreasing inn, since
the sum (378) must converge for anyq.

Similarly, for � = 1 ; the "Kondratiev spaces" (S) � 1, with

(S)1 � (S) � L 2(d� ) � (S) � � (S) � 1:

Remark 5 More generally, can construct analogously

(N )1 � (N ) � (H ) � (N ) � � (N ) � 1:
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4.2.1 Characterization of Generalized Functions

In many cases � will be given in terms of what physicists might call a "source
functional", such as

T�( f ) = E
�

�( ! )ei
R

! ( t ) f ( t )dt
�

=
Z

d� (! )�( ! )ei h!;f i :

It looks much like a Fourier transform, but in view of the Gaussian integration
measure� it does not intertwine di�erentiation and multiplication operators;
we should rather call it a Gauss-Fourier transform.

A related quantity is the so-called S-transform. Consider

ef (! ) = : e
R

! ( t ) f ( t )dt : (379)

=
X

k

1
k!

Z
dk t f (t1) : : : f (tn ) : ! (t1) : : : ! (tn ) :

=
e<!;f>

E (e<!;f> )
2 (L 2) whenever f 2 L 2(dt):

Here h�; �i denotes the bilinear extension of the scalar product ofL 2:
The last equality is the infinite dimensional analogue of the well-known

generating function for Hermite polynomials hn

X

k

f k

k!
hn (! ) = e!f � f 2

2 :

Hence we may calculate, first for' 2
�
L 2

�

S' (f ) = E
�

' (! ) : e
R

! ( t ) f ( t )dt :
�

= ( '; e f )(L 2 ) :

One use of this is that it allows us to determine the kernel functionsFn in the
chaos expansion

' (! ) =
1X

n =0

Z
dn tFn (t1; : : : ; tn ) : ! (t1) : : : ! (tn ) : : (380)

of ': They are just the nth order terms of the S-transform of '; since from the
orthogonality of the Wick products one has immediately that

S' (f ) =
X

n

Z
dn tFn (t1; : : : ; tn )f (t1) : : : f (tn ):

Exercise 11 Verify the previous formula!
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Exercise 12 Calculate the kernel functions Fn for

' =
Z T

0
� (B (t) � a)dt

Exercise 13 Calculate the S-transform of

' A (! ) = e� 1
2 ( !;A! )

for suitable non-negative operators A in trace class.

Finally we note
S' (f ) = E (' (� + f ))

as a consequence of the Gaussian nature of the white noise measure. For a
one-dimensional normal distribution one �nds immediately

E (' � ef ) =
Z

R1
d� � ' (! ) � ef (! )

=
Z

d!
p

2�
e� ! 2

2 � ' (! ) �
e! � f

e
f 2
2

=
Z

d!
p

2�
e� ! 2

2 ' (! + f )

=
Z

R1
d� (! )' (! + f ) = E (' (� + f )) :

For test functions f 2 S(R1) one veri�es that ef 2 (S); hence we can extend
the S-transform to � 2 (S) � by setting

S�( f ) = hh� ; ef ii :

where hh�; �ii denotes the bilinear extension of the scalar product of
�
L 2

�
: Note

also the relation
T�( f ) = C(f ) � S�( if ):

It is not hard to verify that for generalized white noise functionals � 2 (S) �

1. S�( zf 1 + f 2) is analytic in the whole complex z-plane, and

2.
jS�( zf )j < aebjzf j2

p :

Remarkably, these two conditions are not only necessary but in fact su�cient
to characterize generalized white noise functions by theirS- or T- transforms.
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Theorem 15 [6]
(1) A functional G(f ); f 2 S(R1); is the S-transform of a unique generalized

white noise functional � 2 (S) � i� for all f i 2 S(R1); G(zf 1 + f 2) is analytic in
the whole complex z-plane and of second order exponential growth

jG(zf )j < aebjzf j2
p :

(2) A functional G(f ); f 2 S(R1); is the T-transform of a unique generalized
white noise functional 	 2 (S) � i� for all f i 2 S(R); G(zf 1 + f 2) is analytic in
the whole complexz-plane and of second order exponential growth

jG(zf )j < aebjzf j2
p :

Exercise 14 (Gauss kernels). Consider

N exp
�

�
1
2

(!; A! )
�

�
' A (! )
E (' A )

:

To which operators A can you extend this as a Hida distribution?

As a consequence of the characterization we have also an existence crite-
rion for converging sequences and for integrals with respect to an additional
parameter.

Proposition 16 Let (� k )k � 0 2 (S) � , then the following are equivalent:

1. The (� k ) converge in (S) � .

2. For any f 2 S(R1)d ,

� (S� k (f )) k � 0 is a Cauchy sequence, and

� There exist c1; c2, p � 0 such that

j S� k (f ) j� c1ec2 jH p f j2
0 ; 8f 2 S(R1 )d:

Proposition 17 Let be (
 ; B; m) a measure space, and� � 2 (S) � for � 2 
 .
Suppose that

1. the transformation S� � is measurable in� , for any f 2 S(R1)d

2. there exists p > 0 independent of � , and functions c1 2 L 1(
) ; : c2 2
L 1 (
) such that

jS� � (f )j � c1(� )ec2 ( � ) jH p f j2
0 8 f 2 S(R1 )d

Then � � is integrable Z



� � dm(� ) 2 (S) �

(in the sense of Bochner) in some Hilbert space(S) � q , (L 2) � (S) � q � (S) � ,
and

Sf
Z



� � d� g(f ) =

Z



S� � (f )d�:
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Elements of the space (S) � 1 are called Kondratiev distributions, the well
known Hida distributions form a subspace [KLS96]. The test functions exp (i h�; f i )
and ef 2 (S) are not in (S)1, but we can still characterize these distributions
by their T- or S-transforms for small enough argumentf : Let � 2 (S) � 1 then
there exist p; " such that we can define for every

f 2
n

f 2 S(R1)
�
�
� jf j2p < "

o
(381)

the T-transform by
T� ( f ) := hh� ; exp (i h�; f i )ii (382)

Conversely, a functionG for which G (f 0 + zf ) is holomorphic and bounded for
small enough arguments, is the T-transform of a Kondratiev distribution; the
same holds for theS� instead of the T-transform [7].

1. We can de�ne an in�nite dimensional Fourier transform by

T � 1S = F (383)

2. Algebraic structure, via

S� 1 (S(�) S(	)) =: � � 	 : (384)

This product is the Wick product:

: ! 
 n (s) : � : ! 
 m (t) :=: ! 
 n (s)! 
 m (t) :;

hence, for

�( ! ) =
1X

n =0

Z
dn tFn (t1; : : : ; tn ) : ! (t1) : : : ! (tn ) :

	( ! ) =
1X

n =0

Z
dn tGn (t1; : : : ; tn ) : ! (t1) : : : ! (tn ) :

we have

(� � 	) ( ! ) =
1X

n =0

Z
dn tH n (t1; : : : ; tn ) : ! (t1) : : : ! (tn ) : (385)

with

Hn =
nX

k=1

Fk Gn � k . (386)

3. For the Kondratiev space, analytic functions g of S-transforms are again
admissible; this admits an analytic Wick calculus on distribution space

g(S(�)) = S (g� (�))
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with
g� (�) �

X
an � � n for g(z) =

X
an zn

Wick Calculus in Gaussian Analysis (Y. G. Kondratiev, P. Leukert, L. S.
[7])

Triples characterized by holomorphic functions of other than 2nd order
growth are studied by

R. Jenane-Gannoun, R. Hachaichi, H. Ouerdiane, A. Rezgui: Un th�eor�eme
de dualit�e entre espaces de fonctions holomorphes �a croissance eponen-
tielle' JFA 171, 1-14 (2000) [4]

Exercise 15 Consider the spaces

(S)1 � (S) �
�
L 2�

� (S) � � (S) � 1:

In which of these spaces is
' = � (B (t) � a)

an element?

Hints:

1. use the Fourier representation of the� -function.

2. get the kernels of the chaos expansion from the S-transform.

4.3 Regular generalized functions

Consider square integrable white noise functionals' for which the chaos expan-
sion

' (~! ) =
X

n

< : ! 
 n :; Fn >

�
X

n

Z

Rn
dn tFn (t1; :::; tn ) : ! 
 n : (t1; :::; tn )

converges rapidly,i.e.,

k' k2
q �

X

~n

(n!)22qn jFn j2L �e (R n ) < 1 :

In our previous notation

k' k2
p;q =

1X

n =0

(n!)1+ � 2nq jFn j2p (387)

this corresponds to the case� = 1 and p = 0, i.e. the Fn are simply L 2-functions
with rapidly decreasing norms. Define the Hilbert spaceG1

q as

G1
q =

n
' 2 (L 2) : k' k2

q < 1
o

:
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The space of test functionsG1 is their intersection:

G1 = pr � lim
q!1

G1
q:

and G� 1 the dual space ofG1 with respect to (L 2).
The corresponding bilinear dual pairing � � ; � � extends the sesquilinear

inner product on (L 2)

� � ; ' � = ( � ; ' )(L 2 ) ; if � 2 (L 2):

The constant function 1 is in G1; we may extend the definition of the expectation
E(�) to distributions � 2 G� 1:

E (�) = � � ; 1 � :

4.4 2nd Quantization, Conditional Expectations

Turning to Fock space and operatorsA on L 2 (R) ; the linear map which trans-
forms each sequence (Fn ) of functions to the sequence (A 
 n Fn ), in particular

Fn = f (t1) � : : : � f (tn ) ! Fn = Af (t1) � : : : � Af (tn )

is called the second quantization of A, denoted by �( A):

�( A) =
M

n

A 
 n :

One also often needs Fock space operators which are additive on multiparticle
wave functions, mapping e.g.F n = f (t1) : : : f (tn ) to

(Af (t1)) � f (t2) � : : : � f (tn ) + : : : + f (t1) � : : : � f (tn � 1) � Af (tn )

(such as e.g. kinetic energy as sum of one particle energies). This is formal-
ized by

d�( A) =
M

n

(A 
 1 
 : : : 
 1 + : : : + 1 
 :: 
 A)

For a detailed discussion see Reed and Simon [9].

Exercise 16 Calculate d�(1) :

Exercise 17 Calculate �( A)e(f ).

Denote by � t the Heaviside function

� t (s) �
�

1 if s � t
0 if s > t
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and also the linear operator

� t : f (�) ! � t (�) f (�) :

The second quantization �(� t ) of � t , t 2 R, is a projection operator in (L 2);
with

�(� t )' (~! ) =
X

n

< : ! 
 n :; � 
 n
t Fn >

=
X

n

tZ

�1

dn tFn (t1; ::; tn ) : ! 
 n : (t1; ::; tn )

Clearly this extends to the spaceG� 1.

Remark 6 Denote by F t the � -algebra generated byf B (s); s � tg. The con-
ditional expectation with respect to F t is the expectation of � if you know B(s)
up to time t, i.e. it will be a function of white noise up to time t.

Have

E (� jF t ) = �(� t )� =
X

n

Z t

�1
dn tFn (t1; :::; tn ) : ! 
 n : (t1; :::; tn )

(�(� t )� extends the conditional expectation with respect toF t to � 2 G� 1:)

Theorem 18 Brownian martingales � t 2 (L 2) are characterized by

�(� s)� t = � s if s < t (388)

or, equivalently

� t (~! ) =
X

n

Z t

�1
dn tFn (t1; :::; tn ) : ! 
 n : (t1; :::; tn )

where the Fn do not depend on t.

4.5 Calculus

Test functionals ' 2 (S) admit directional ("partial", "Gateaux") derivatives:

Dh ' (! ) = lim
" ! 0

' (! + "h ) � ' (! )
"

exists for any generalizedfunction h 2 S� (R1): Hence the adjoint D �
h acts con-

tinuously on (S) � 1.

Exercise 18 Verify
Dh e(f ) = ( h; f )e(f )

.
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Recall that in Fock space we have

a(f )eF ock (f ) = ( h; f )eF ock (f )

I.e. under the Wiener-Ito-Segal isomorphism we have

(L 2) $ F

D f $ a(f )

the derivative Dh corresponds to the annihilation operator, and hence

D �
h $ a� (f ):

Exercise 19 Verify
D �

h = � Dh � < !; h >

Hint: Study
(e(f ); D �

h e(g))L 2 (d� ) :

In particular for h = � t , we introduce the Hida derivative

Dh � @t :

Exercise 20 Show that

S(Dh ' )( f ) = Dh S(' )( f )

S(@�
t ' )( f ) = f (t)S(' )( f )

On Wick products the action of @t is

@t : ! (t1) : : : ! (tn ) :=
X

k

� (t � tk ) :
Y

l 6= k

! (t l ) :

while
@�

t : ! (t1) : : : ! (tn ) :=: ! (t)! (t1) : : : ! (tn ) :

Comparing this with the recursion formula (372) one �nds

@t + @�
t = ! (t):

Exercise: Show forf 2 S(R)

�
D �

f

� n
1 =

Z
dn t f (t1) : : : f (tn ) : ! (t1) : : : ! (tn ) :

and
1Y

k=1

@�
t k

1 =: ! (t1) : : : ! (tn ) : :
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@t gives rise to a natural gradient (Frechet derivative):

r ' =
�

@t ' : t 2 R1	
:

I.e.
r : (L )2 ! L 2(R1) 
 (L )2

and
r : (S) ! S(R1) 
 (S):

The corresponding carr�e du champ functional is a test functional for all
' 2 (S)

jr ' j2 = ( r '; r ' )L 2 (R )

=
Z

dt j@t ' j2 2 (S) :

4.5.1 Skorohod and Itô integrals, extended

De�nition 19 Given � an element from L 2 (R) 
 G� 1
� q, for some q 2 N0, we

call generalized Skorohod integral of� the distribution on G� 1, I (�) , def ined as
the unique regular generalized function fromG� 1 for which the following equality

hhI (�) ;  ii = hh� ; r  ii

holds for every test function from G1.

This de�nition generalizes the notion of Skorohod integral. Informally we
have

I (�) =
Z

@�
t � dt:

In fact, if � 2 L 2 (R) 
 D ,

D �

(

F 2 (L 2) :
X

n

n!n jFn j22 < 1

)

;

the generalized Skorohod integralI (�) coincides with the Skorohod integral.

Proposition 19 For t 2 R, let F t denote the� -algebra generated byf B (s); s �
tg. If

(1) ' 2 L 2(R)
 (L 2) and
(2) ' adapted to(F t )t 2 R,
then the generalized Skorohod integralI (' ) is equal to the Itô integral of ' :

I (' )( ! ) =
Z

' (t; ! )dB(t; ! )

Remark 7 Without (1) we speak of a generalized Itô integral.
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4.6 Applications, Examples

4.6.1 � � Functions

E.g. in the Edwards polymer model: polymer as Brownian motion path with
partition function

Z (a) = E
�

e� a
R

d2 t� (B ( t 1 ) � B ( t 2 ))
�

Must make sense of self intersection local time

L (T) =
Z T

0
d2t� (B (t1) � B (t2))

Since (L�evy) 1940, more that :5 � 102 publications.
The contributions of white noise analysis:

� � (B (t1) � B (t2)) and L are well defined generalized functions of white
noise

� kernels of chaos expansion may be calculated in closed form and exhibit
explicitly the increasing singularity as the dimension d increases.

� The Yor renormalization limit of self-intersection local times for d = 3

r (" ) (L " � E (L " )) !
" ! 0

� (389)

can be understood in terms of chaos expansion, and extended tod > 3:

Recent progress: Martingale Approximation for Intersection Local Time of
Brownian Motion ( M. Faria, A. Rezgui, L. S. [2])

� higher order self intersections: R. Jenane-Gannoun: Ph.D. thesis, Tunis,
March 2001.

� intersections of di�erent Brownian motions, etc.

� For di�usions
dY = � (Y; t)dt + � (Y; t)dB(t)

have
� (Y (t) � x) 2 (S) �

and with an explicit Isobe-Sato expansion [Isobe] in terms of white noise
(M. Gordon, tese, U. Madeira).
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4.7 Stochastic Partial Di�erential Equations

Example 20 (Burgers equation):

ut + u � ux = �u xx + F (x; t; ! ) (390)

Problem: Nonlinear expressions for space-time dependent noise produce prod-
ucts of generalized functions. Renormalization procedure required for nonlin-
earities. Possible ansatz (�ksendal et al. [12]) is

ut + u � ux = �u xx + F (x; t; ! ) (391)

In terms of S-transforms (denoted byeu etc.)

eut + eueux = � euxx + ~F (x; t; f ) (392)

Note: f 2 S(R) instead of ! 2 S� (R), hence solution via Cole-Hopf transform
and perturbation theory, with

u(x; t; �) 2 (S) � 1 (393)

Much more on this in �ksendal [12].

4.8 A generalized Clark-Ocone formula

The Clark-Ocone formula: given '; represent it as an Ito integral

' = E(' ) +
Z

mt dBt (394)

with m a function of ' . (E.g. in mathematical f inance: Given the value ' ,
determine the corresponding hedging strategymt :)

Theorem 20 Let � 2 G� 1. Then it can be written as a generalized Itô integral

� = E(�) + I (m)

with
m(t) = �(� t )@t �

In terms of the S-transform:

Theorem 21 Given a regular generalized function � from G� 1 and q 2 N0

such that � 2 G� 1
� q, its S-transform is equal to

S�( � ) = E(�) +
Z

R
d� � (� )

�
�� (� )

S(�)(� � ~� ):

Remark: The Clark-Ocone formula is useful to calculate variances: no need
to calculate the expectation, can use Ito-Segal isomorphism onE

�
m2(� )

�
in

E
�

(� � E (�)) 2
�

=
Z

R
E

�
m2(� )

�
d� :

Ref. [1]: A Generalized Clark-Ocone Formula (M. de Faria, M. J. Oliveira,
L. S.) Random Oper. Stoch. Eqs.,8 , no. 3 (2000).
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An example: Donsker's delta function

� (B (t) � a) 2 G� 1;

with S-transform

(S� (B (t) � a)) ( f )

= (2 �t ) � 1=2exp

0

B
@�

� Rt
0 f (s)ds � a

� 2

2t

1

C
A

From the above Theorems

� (B (t) � a) = E (� (B (t) � a)) +
Z

dB(� )m(� )

with

Sm(� )( f ) =
�

�f (� )
S(�)(� � f ):

The functional derivative is
�

�
�f (� )

S(�)
�

(f ) = � 1[0;t ](� )
�
2�t 3� � 1=2

�
� Z t

0
f (s)ds � a

�
exp

0

B
@�

� Rt
0 f (s)ds � a

� 2

2t

1

C
A (395)

Projecting the f with � � , we obtain

(Sm(� )) ( f )

= � 1[0;t ](� )
�
2�t 3� � 1=2

� Z �

0
f (s)ds � a

�
exp

 

�

� R �
0 f (s)ds � a

� 2

2t

!

:

Inverting the S-transform obtain

m(� ) = � 1[0;t ](� )
B (� ) � a
(t � � )3=2

exp�
(B (� ) � a)2

2(t � � )
(396)

Note: m(� ) is an adapted random variable in(L 2) as long as� < t , permits
conventional Itô integration. Hence, as a limit in G� 1;

� (B (t) � a) = (2 �t ) � 1=2e� a 2
2t + lim

" ! +0

Z t � "

0
dB(� )m(� ):
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5 Appell Systems: A glimpse at Non-Gaussian
Analysis

5.1 A General Framework

Generalizing from the Gaussian white noise measure will consider measures�
on S� (R) which satisfy two additional assumptions. The f irst one concerns
some analyticity of the Laplace transformation

l � (f ) =
Z

S � (R )
exph!; f i d� (! )

= E (exph�; f i ) ; f 2 SC (R) :

Assumption 1 (Analyticity) The measure� has an analytic Laplace trans-
form in a neighborhood of zero, i.e.,l � 2 Hol0(SC (R)) .

This is equivalent to a bound on moments: 9p 2 N; 9C > 0 such that
�
�
�
�
�

Z

S � (R )
hx; f i n d� (x)

�
�
�
�
�

� n! Cn jf jnp

Assumption 2 (Non-Degeneracy)
Consider "continuous polynomials"

' (! ) =
NX

n =0



! 
 n ; Fn

�

If
R

A 'd� = 0 for all A 2 B (S� (R)) then ' � 0.

5.2 The Appell system

Recall the fundamental notion of the normal ordered or Wick polynomials in the
Gaussian case. We had

ef (! ) =
e<!;f>

E (e<!;f> )
: (397)

=
X

k

1
k!



Pk (! ); f 
 n �

Recall also the formula
�
D �

f

� k
1 =



Qk (! ); f 
 n �

where of course
Pk (! ) = Qk (! ) =: ! 
 n :

were the orthogonal Wick polynomials.
Now in the non-Gaussian case we can do the same constructions. But
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� the polynomialsPk are no more orthogonal. nevertheless we can, as before
use them to construct test functions

�

' =
1X

n =0

hP �
n ; Fn i 2 (S)1

using againFn (t1; :::; tn )which are rapidly decreasing and arbitrarily often
di�erentiable in t, and also rapidly decreasing inn, just as in the Gaussian
case.

� the Qk are not polynomials any more: . OnR consider a measure d� (! ) =
� (! ) d! where� is a positive density function onR such that assumptions
1 and 2 are fulf illed. In this setting the adjoint of the di�erentiation
operator is given by

�
d

d!

� �

f (! ) = �
��

d
d!

�
+ � (! )

�
f (! ) ;

where � is the logarithmic derivative of the measure� and given by

� =
� 0

�
:

This enables us to calculate theQ � -system. One has

Q�
n (! ) =

��
d

d!

� � � n

1

= ( � 1)n
�

d
d!

+ � (! )
� n

1

= ( � 1)n � (n ) (! )
� (! )

;

where the last equality can be seen by induction.

Note that, for � non smooth, this construction producesgeneralized func-
tions Q�

n even in this one-dimensional case. If� (! ) = 1p
2�

exp(� 1
2 ! 2) is the

Gaussian density, thenQ�
n is related to the n-th Hermite polynomial:

Q�
n (! ) = 2 � n= 2Hn

�
!

p
2

�
:

� On the other hand, theP; Q form a "biorthogonal system" (Appell system):

� =
1X

n =0

Q�
n (Gn )
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and

' =
1X

n =0

hP �
n ; Fn i

obey the orthogonality relation

(� ; ' )� =
1X

n =0

n!(Gn ; Fn );

and for test functions ' ; with smooth kernel functions Fn , we can ex-
tend this to generalized functions of non Gaussian noise, with distribution
valued kernelsGn :

� As before we can de�ne the S-transform of generalized functions

S� � ( f ) := h� ; ef i

and the biorthogonality of P and Q implies

S� � ( f ) =
1X

n =0



Gn ; f 
 n �

;

5.3 A Remark on Generalized Appell Systems

To generalize the Appell system we consider more general generating functions

e�
� (f; ! ) =

exph!; � (f )i
l � (� (f ))

;

obtained from mappings
� : SC ! SC

which we assume

� holomorphic near zero

� invertible

� and such that� (0) = 0 .

We write for the inverse function � � 1 = �:
Using the same procedure as above we de�neP �;�

n (! ) 2 S� , called general-
ized Appell polynomials such that

e�
� (f; ! ) =

1X

n =0

1
n!

hP �;�
n (! ); f 
 n i ; f 2 U0

� ; ! 2 S� : (398)

Likewise, we def ine a generalized functionQ�;�
n (� (n ) ) via the S� -transform

S�

�
Q�;�

n

�
� (n )

��
(f ) :=

D
� (n ) ; � (f ) 
 n

E
: (399)

Again one can show
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Theorem 22 (Biorthogonality of Q �;� and P �;� with respect to. � )

hhQ�;�
n (Gn ) ; P �;�

m (Fm )ii � = � nm n! hGn ; Fm i ; (400)

In a small number of special cases, one can choose the transformation� in
such a way that the P-system is in fact orthogonal. In the one-dimensional case
this is known as the "Meixner class" [2]. The Poisson measure is one of them
as we shall see in the next chapter.

6 Conf iguration Space and Poisson Analysis

6.0.1 Processes in Discrete Con�guration Spaces

Ising model: spins with values +1 or -1 on the sites of a lattice
Also: interpretation as \lattice gas". Particle is present resp. absent at the

vertex.
Spin 
ip +1 ! � 1: particle is gone (\death")
Spin 
ip � 1! +1: particle appears (\birth")
Vast literature on various possible dynamical processes (see e.g . [3] )
Large variety of models.
Example: Independent births and deaths: \Glauber dynamics"
Example: Simultaneous death and birth at two neighboring sites: \Kawasaki

dynamics". Particles hop from one site to a neighboring one. Particle number
conserved.

For con�gurations in the continuum much less is known. Recent results can
be found

� for Glauber dynamics e.g. in [1]

� for Kawasaki in [5][6]

6.1 Continuous Conf iguration Spaces

We want to describe in�nite systems of particles: "con�gurations" of indistin-
guishable point particles in Rd or in some subsetX � Rd.

The con�guration space � := � X is the set of all locally �nite subsets of
X , i.e..,

� := f 
 � X : # ( 
 \ K ) < 1 for bounded K � X g:

For a given con�guration 
 = f x1; x2; : : :g we denote

h
; f i =
X

x 2 


f (x) =
X

x 2 


Z
� (x � x0)f (x0)dx0:

This is well de�ned if f is continuous and zero outside a �nite volume: the sum
is then �nite - no problem of convergence arises.
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6.2 Dynamics on Con�gurations

Example 21 Kawasaki dynamics:

@t F (
 ) =
X

x 2 


Z

Rd
dy a(x � y) (F (
 nx [ y) � F (
 ))

Particles are hopping from x to y, with rate a(x � y). How to calculate F =
F (
; t ) for a given initial state F (
 )?

Example 22 Glauber "Birth and Death":

@t F (
 ) =
Z

Rd
dy b(y) (F (
 [ y) � F (
 ))

+
X

x 2 


d(x) (F (
 nx) � F (
 ))

6.3 Poisson Measures

� Consider n-point conf igurations � (n ) := f 
 2 � : j
 j = ng:

� We can relate them to non-coinciding n-tuples

We want to attribute probabilities to con�gurations, and begin by consider-
ing con�gurations in a domain X of space with �nite volume:

jX j = V < 1

For con�gurations of only one point x 2 Rd the obvious choice will be a proba-
bility proportional to the volume element dv:

For n-point con�gurations, elements of � (n )
X we shall use

dmn =
1
n!

(dv)n

with the combinatorial 1 =n! factor for the indistinguishability of the n particles.
- But we are interested in con�gurations of arbitrary many particles, i.e. we
want a probability measure on

� X =
1G

n =0

� (n )
X :

We �rst extend the measures mn to a measurem on � X , simply by setting

mj � ( n )
X

= mn :

This is not a probability:

m (� X ) = m

 
1G

n =0

� (n )
X

!

=
X

n

m
�

� (n )
X

�

=
X

n

1
n!

� Z

X
dv

� n

= exp ( V ) :
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Must normalize to get a probability measure on �

� � exp (� V ) � m

6.3.1 The Characteristic Function

E (exp(i h
; f i )) =
Z

�
exp(i h
; f i )d� (
 )

=
X

n

Z

� ( n )
exp(i h
; f i )d� (
 )

= exp ( � V )
X

n

1
n!

 Z

X n
exp(i

nX

k=1

f (xk ))
Y

k (dxk )

!

= e� V
X

n

1
n!

� Z

X
exp(if (x))dx

� n

= e� V
� Z

X
exp(if (x))dx

�

= exp
� Z

X
(exp(if (x) � 1) dx

�
:

We have (re)discovered the "characteristic function" of the Poisson White
Noise probability measure:

E (exp(i h
; f i )) = exp
� Z

X
(exp(if (x) � 1) dx

�

= C� (f ) =
Z

ei h!;f i d� (! )

Note: No need to restrict ourselves to a space of �nite volume -

C� (f ) =
� Z

R d
(exp(if (x) � 1) dx

�

is well de�ned even in the limit where X = Rd; and we have a limiting measure

� = lim
X ! R d

� j � X

Likewise for more general densities, with

dv = z(x)dx

where z is a non-negative \intensity":

C� z
(f ) = exp

� Z

R d
(exp(if (x) � 1) z(x)dx

�
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6.3.2 Bochner-Minlos

Recall that the Bochner and Minlos theorem guarantees the existence of a prob-
ability measure on the space of distributions such that

C� z (f ) =
Z

D �
ei h!;f i d� z (! )

see e.g. [6]. - In our explicit construction we have used the formula

h
; f i =
X

x 2 


f (x) =
X

x 2 


Z
� (x � x0)f (x0)dx0:

We see from this that the measure is concentrated only on those distributions
which are sums of Dirac� -functions

! 
 =
X

x 2 


� x :

6.4 The Poisson L 2- Space

Introduce the L 2 space of functionsF on con�gurations 
 with Poisson measure:

F = F (
 ) 2 L 2(d� z ):

6.4.1 Charlier Polynomials

In L 2(d� z ) consider

e(f; ! ) = exp ( h!; ln(1 + f )i � h f i ) ; ! = ! 
 ; (401)

with

hf i =
Z

f (x)z(x)dx:

For ! = ! 
 =
P

x 2 
 � x ; �nd

e(f; ! 
 ) = exp ( � h f i )
Y

x 2 


(1 + f (x)) :

Their scalar product is

(e(f ) ; e(g))L 2 (d� z ) = e( f;g )L 2 ( dv ) :

Note that this is exactly the scalar product of two coherent states in Fock
space!

e(f; ! 
 ) is generating function of orthogonal polynomials (\Charlier polyno-
mials" ) in !:

Expanding e(f; ! 
 ) in orders of f :
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e(f; ! ) =
1X

n =0

1
n!

hCn (! ); f 
 n i ;

we get the orthogonality relation
�
hCn (! ); f 
 n i ; hCm (! ); g
 m i

�
L 2 (d� ) = � mn n!

�
f 
 n ; g
 n �

L 2

6.4.2 Another kind of Fock

Extend from
f 
 n = f (x1) : : : f (xn )

to symmetric functions
f n = f n (x1; : : : ; xn )

With these we can express any square integrableF as

F (
 ) =
1X

n =0

hCn (! 
 ); f n i

and obtain an isomorphism of Hilbert spacesL 2 (� ; d� (
 )) ' F :

Z
F (
 ) G (
 ) d� (
 ) =

1X

n =0

n!
Z

f n (x1; : : : ; xn )gn (x1; : : : ; xn )dn v:

6.5 Annihilation and Creation Operators on Poisson Space

6.5.1 Annihilation Operators

Many interesting questions arise. What about the (images of) annihilation and
creation operators in Poisson space?

Exercise 21 Show

(a (h) F ) ( 
 ) =
Z

X

(F (
 [ f xg) � F (
 )) h (x) dx

def:
=

Z

X

D x F (
 ) h (x) dx:

Hint: Recall that coherent states are eigenstates of annihilation operators

a (h) e(f ) = ( h:f )e(f )

and verify the above for

F (
 ) = e(f; 
 ) = exp ( h
; ln (1 + f )i � h f i ) :
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6.5.2 Creation Operators

For the adjoint one �nds similarly

(a� (g) F ) ( 
 ) :=
X

x 2 


F (
 � f xg) g (x) � h gi F (
 ) :

To determine the action of the adjoint operator a� (g); we use the "Mecke
Identity"

Z

�

X

x 2 


H (
; x )d� (
 )

=
Z

X

Z

�
H (
 [ f xg; x)d� (
 )dx

(see,e.g., [Mec67]).
For the adjoint of the operator a(g) have

(G; a� (g)F )L 2 ( � ) = ( a(g)G; F )L 2 ( � � )

=
Z

X

Z

�
G(
 [ f xg)F (
 )g(x)d� (
 )dx

�
� Z

�
G(
 )F (
 )d� (
 )

�
hgi :

Now use the Mecke identity on the 1st integral and get

(G; a� (g)F )L 2 ( � ) =
Z

�
G(
 )

 
X

x 2 


F (
 nf xg)g(x)

!

d� (
 )

�
� Z

�
G(
 )F (
 )d� (
 )

�
hgi

=

 

G;
X

x 2�

(F (�nf xg)g(x)) � h gi F

!

L 2 ( � )

:

I. e. the action of a� (g) is

(a� (g)F ) ( 
 ) =
X

x 2 


(F (
 nf xg)g(x)) � h gi F (
 ):

Remark 8 By the de�nition of the creation operators a� (' ) ( ' 2 D ) on Fock
space, one has

X (a� (' ))n

n!
1 = eF ock (' ):

Therefore
X

�
a�

� (' )
� n

n!
1 = e� (' )

and �
a�

� (' )
� n

1 = hC �
n ; ' 
 n i

for each n 2 N.
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6.5.3 Poisson Stochastic Integrals

As in the case of White Noise analysis, we can define a Poisson-Skorohod integral
(over X = R 3 t) for suitable integrands � [IK88]

I (�) =
Z

X
D �

t � dt:

6.5.4 Bogoliubov Exponentials

For later reference we �nally introduce

eB (f; ! 
 ) = exp hf i eB (f; ! 
 ) =
Y

x 2 


(1 + f (x)) :

Their expectations with respect to suitable measures� on con�guration space

E (eB (f )) =
Z

�
eB (f; ! 
 )d� (
 ) =

X

n

1
n!



k�

n ; f 
 n �

are called Bogoliubov functionals and are the generators of the nth order
correlation functions for the distribution � .

6.6 Lebesgue-Poisson Measure on Finite Conf igurations -
yet another Fock space.

De�nition 20 The space of finite configurations �0 is

� 0 := f 
 2 � : j
 j < 1g � � :

� 0 =
1G

n =0

� (n )
X : (402)

Def ine a measure� (n ) on (� (n ) ; B(� (n ) )) by

� (n ) : = � 
 n ; (403)

� (0) (; ) : = 1 (404)

De�nition 21 The Lebesgue-Poisson measure with intensity measure� is defined
by the sum of measures

� � :=
1X

n =0

1
n!

� (n )
X :
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� Functions G on � 0 :

Gj � ( n ) (
 ) = G (f x1; :::; xn g) � G(n ) (x1; :::; xn )

G(n ) (x1; :::; xn ) is by de�nition a symmetric function!

� Have

Z

� 0

G (� ) d� � (� ) =
1X

n =0

1
n!

Z

� ( n )
X

G (� ) d� (n ) (� )

=
1X

n =0

1
n!

Z

X n
G(n ) (x1; :::; xn ) d� 
 n (x1; :::; xn )

� De�ne

n!f (n ) (x1; :::; xn ) := G(n ) (x1; :::; xn )

f (0) := G(; );

Have
Z

� 0

jG (� )j2 d� � (� )

=
1X

n =0

n!
Z

X n

�
�
� f (n ) (x1; :::; xn )

�
�
�
2

d� 
 n (x1; :::; xn )

i.e.
kGkL 2 ( � � ) =






 (f (n ) )1

n =0








Exp L 2 ( �;dx )
:

Theorem 23 The Hilbert space L 2(� 0; d� � ) is isomorphic to the sym-
metric Fock space ExpL 2(X; d� ) through the mapping I � given by

I � : L 2(� 0; d� � ) $ ExpL 2(X; d� )
G $

�
f (n )

� 1

n =0

Remark 9 De�nition 22 Recall the total set of coherent statesef in Gaus-
sian analysis (eq. 379):

ef (! ) = : e
R

! ( t ) f ( t )dt :

=
X

n

1
n!

Z
dn t f (t1) : : : f (tn ) : ! (t1) : : : ! (tn ) :
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i.e. with Fock space image

e(f ) =
�

1
n!

f 
 n
� 1

n =0

and note that their image in Lebesgue-Poisson space is then given by

e� (f; f x1; :::; xn g) =
� Q n

i =1 f (x i ) if n > 0
1 otherwise

:

De�nition 23

e� (f; � ) �
Y

x 2 �

f (x) ; � 2 � 0nf;g

e� (f; ; ) � 1

is called the (Lebesgue-Poisson) coherent state corresponding to the one-particle
vector f .

The importance of the (Lebesgue-Poisson) coherent states is based on the
fact that a family of coherent statesf e� (f ) : f 2 Lg is total in L 2(� � ) whenever
L is a dense subspace inL 2(� ). Also, it is not hard to show that they are in
L p(� � ):

Proposition 24 Let p � 1 . For all f 2 L p(� ) we have e� (f ) 2 L p(� � ) and,
moreover,

ke� (f )kp
L p ( � � ) = exp

�
kf kp

L p ( � )

�
:

Given a f 2 L p(� ), p � 1, a direct application of the def inition of the
Lebesgue-Poisson measure� � yields

Z

� 0

je� (f; � )jp d� � (� ) =
1X

n =0

1
n!

Z

� ( n )
X

je� (f; � )jp d� (n ) (� )

=
1X

n =0

1
n!

Z

X n
jf (x1):::f (xn )jp d� 
 n (x1; :::; xn )

=
1X

n =0

1
n!

� Z

X
jf (x)jp d� (x)

� n

= exp
� Z

X
jf (x)jp d� (x)

�
:

�
In particular, for a function f 2 L 1(� ), the expectation of the corresponding

coherent statee� (f ) is given by
Z

� 0

e� (f; � )d� � (� ) = exp
� Z

X
f (x)d� (x)

�

= exp
�
hf i �

�
: (405)
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6.7 Three Unitary Isomorphisms

A natural unitary isomorphism exists between the spacesL 2(� � ) and L 2(� � ).
Recall that we have def ined the unitary isomorphismI � between the space

L 2(� � ) and the symmetric Fock spaceExpL 2(� ):

I � : L 2(� � ) ! ExpL 2(� )
G 7�!

�
f (n )

� 1

n =0

: (406)

Combining the previous statements concerning unitary isomorphisms we have

Proposition 25 The linear mapping

I �� = I � 1
� � I � : L 2(� � ) ! L 2(� � )

de�ned by

G ! I �� (G) =
1X

n =0

D
C �

n ; f (n )
E

;

with f (n ) (x1; :::; xn ) =
1
n!

G (f x1; :::; xn g) ;

f (0) : = G(; )

is a unitary isomorphism with inverse mapping I �� := I � 1
� � I � given by

I �� :

 
1X

n =0

D
C �

n ; f (n )
E

!

! G;

with G (f x1; :::; xn g) = n!f (n ) (x1; :::; xn ):

Summarizing

ExpL 2(� )
%
I �

&
I � 1

�

L 2(� � )
I ��! L 2(� � )

In particular
e(f )

%
I �

&
I � 1

�

e� (f )
I ��! e� (f )

with

e� (f; 
 ) =
Y

x 2 


f (x) 
 2 � 0

e(f ) =
�

1
n!

f 
 n
�

n 2 N

e�
� (f; 
 ) = exp

�
� h f i �

� Y

x 2 


(1 + f (x)) 
 2 �
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Remark 10 Clearly these isomorphisms extend to test and generalized func-
tions.

Remark 11 Recall the definition of the S� -transform

(S� 	) ( f ) =
�
	 ; e�

� (f; �)
�

L 2 (� ;d� � )

=
1X

n =0

�
f 
 n ;  (n )

�

L 2 ( � 
 n )

if

	 =
1X

n =0

hC �
n ;  (n ) i :

Setting
S� = S� � I ��

one has
(S� 	) ( f ) = (	 ; e� (f; �))L 2 (� 0 ;d� � ) :

6.8 Algebraic Structures

As in Gaussian analysis - see e.g. eq. (384) - we can introduce a Wick product
in L 2(� � ) by setting

F1 � F2 = S� 1
� (S� F1 � S� F2) :

As a consequence - see e.g. eq. (386) - theWick product F1 � F2 for

Fi =
X

n

D
C �

n ; f (n )
i

E
2 L 2(� � ) (407)

is de�ned by

F1 � F2 :=
min f N 1 ;N 2 gX

n =0

*

C �
n ;

nX

k=0

f (k )
1 
̂ f (n � k )

2

+

:

What then is the product * induced onL 2(� � ) by

F1 � F2 = I �� (F1 � F2)?

To this end we use
I �� = S� 1

� S�

and consider

Fi = e�
� (f i )

S �!
�

1
n!

f 
 n
�

n 2 N
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so that

e�
� (f 1) � e�

� (f 2)
S �!

 
nX

k=0

f 
 k
1 
̂ f 
 (n � k )

2

k!(n � k)!

!

n 2 N

=

 
(f 1 + f 2) 
 n

n!

!

n 2 N

= e(f 1 + f 2)

and

e� (f 1) � e� (f 2)
S � 1

� S �
! S� 1

� e(f 1 + f 2) = e� (f 1 + f 2) :

I.e.

(e� (f ) � e� (g)) ( � ) = e� (f + g; � )

=
Y

x 2 �

(f (x) + g(x))

=
X

� � �

0

@
Y

x 2 �

f (x)

1

A

0

@
Y

x 2 � n�

g(x)

1

A

=
X

� � �

e� (f ) ( � ) � e� (g)( � n� ):

This extends through bilinearity to

(F � G) ( � ) =
X

� � �

F (� )G(� n� ); � 2 � 0:

� P n
k=0 f (k ) 
̂ g(n � k )

�
n 2 N

%
I �

&
I � 1

�
P

� � �
F (� )G(� n� )

I ��! F � G

Exercise 22 Show that

C �
n

�

; ' 
 n �

= ( h
; ' i � h ' i ) � n :

6.9 Return to Kawasaki

Recall the Kawasaki dynamics:

@t F (
 ) = HF (
 ) =
X

x 2 


Z

Rd
dy g(x � y) (F (
 nx [ y) � F (
 ))

In terms of creation and annihilation operators one �nds
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H =
Z

dx z(x)
Z

dy (g(x � y) � g0� (x � y)) ( a� (x)a(y) � a(y)) :

Clearly, in Fock space language this corresponds to a quadratic Hamiltonian
and time development can be calculated in closed form.

6.9.1 Time Evolution:

Time evolution of Bogoliubov exponentials takes on a particularly simple form:

eHt eB (f ) = eB (etA f )

Af (x) :=
Z

Rd
dy g(x � y) ( f (y) � f (x)) :

Evolution of the initial (Poisson) distribution

� z ! P� z ;t

under the adjoint of eHt is characterized by

Z
eB ('; 
 )P� z ;t (d
 ) =

Z
eB (etA '; 
 )� z (d
 ) = exp

� Z

Rd
etA ' (x)z(x)dx

�
:

The Process
A Markov processX t on � , associated with the Kawasaki dynamics

E
�
F (X t ) � F (X 0) �

Z t

0
dsHF (X s)

�
= 0 : (408)

The transition probability (P t )t � 0 of the process(X t )t � 0 is just the product of
the one-particle transition probabilities etA (x � y), i.e.,

Q 1
n =1 etA (xn � yn )dyn .

Technical restriction: the process may not start at any arbitrary initial con-
�guration 
 2 � . Consider the set � of all 
 2 � such that, for somem 2 N
(depending on
 ),

j
 B (n ) j � m vol(B (n)) ; 8 n 2 N:

Have � (�) = 1 for every probability measure� on � whose correlation func-
tions k(n )

� , n 2 N, ful�ll the Ruelle bound

k(n )
� � Cn

i.e. for Poisson measures with bounded intensity, and for Gibbs measures with
suitable potentials, cf. [Ruelle; 1970].
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Shall use the so-called empirical �eld corresponding to a' 2 D (Rd),

nt ('; X ) := h'; X t i =
X

x 2 X t

' (x):

Evolution of Distributions The distribution at time t, P� z ;t (d
 ) is again
Poissonian, with intensity zt 2 L 1 (Rd; dx), given by

Z

Rd
dx etA f (x)z(x) =

Z

Rd
dx f (x)zt (x); (409)

for all f 2 L 1(Rd; dx). Since etA is positivity preserving in L 1(Rd; dx), it follows
from (409) that zt � 0.

Invariant Distributions Proof. Poisson distributions are invariant
under free Kawasaki dynamics i� their intensity

z(x) = const:

Proof. H � 1 = 0 i� the linear annihilation term in H vanishes:
Z

dya(y)
� Z

dxz (x) (g (x � y) � g (x))
�

!= 0

Using Fourier transforms one sees that this requires z=const.
The Symmetric Case

For g even and constantz > 0, H gives rise to a symmetric Dirichlet form
on L 2(� ; � z ),

(F; HF ) = �
1
2

Z

�
� z (d
 )

X

x 2 


Z

Rd
dy g(x � y) jF (
 )j2 :

This allows to derive a Markov process on� with cadlag paths and having� z

as an invariant measure [5]. In this setting H is a negative essentially self-
adjoint operator on L 2(� ; � z ), and the generator of a contraction semi-group on
L 2(� ; � z ).

6.10 Asymptotics

6.10.1 Large Time Asymptotics

� Any Poisson state of constant intensity is invariant under the evolution
(equilibrium).

� \Local Equilibrium": Poisson states with non-constant intensity z=z(x).
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Recall that the state at t� 0 is again Poissonian, with intensity zt 2 L 1 (Rd; dx),
given by Z

Rd
dx etA f (x)z(x) =

Z

Rd
dx f (x)zt (x):

Arithmetic Mean
One says that a functionz 2 L 1

loc (Rd; dx) has arithmetic mean whenever

lim
R ! + 1

1
vol(B (R))

Z

B (R )
dx z(x) � mean(z) (410)

exists.

Theorem 26 Let z � 0 be a bounded measurable function whose Fourier trans-
form ez is a signed measure. Then z has arithmetic mean and the one-dimensional
distribution P� z ;t converges weakly to� mean( z) as t goes to in�nity.

Proof (Outline):
In this case mean(z) = ez(f 0g) ,

Z

Rd
dx f (x)zt (x) =

Z

Rd
dx etA f (x)z(x) ! mean(z)

Z

Rd
dx f (x);

and
� z t

! � mean (z)

weakly, because of convergence of characteristic functions.

Remark:
1. the same conclusion holds e.g. for

z(x) =
�

z1 if x1 � 0
z0 otherwise

:

with mean(z) = z0 + z1
2 , by explicit calculation although in this caseẑ is not a

signed measure. It seems natural to expect that the large time asymptotic exists
for all bounded intensities which have arithmetic mean.

2. On the other hand, not all measurable bounded non-negative functions
z have an arithmetic mean. Counterexamples are slowly oscillating functions
such as

z(x) = c + cos(ln(1 + jxj)) ; x 2 Rd;

where c>1. Then for large R

1
vol(B (R))

Z

B (R )
z(x) dx � c +

1
p

1 + d2
sin

�
ln(R) + arctan( d)

�
:

3. The non-ergodicity of the in�nite particle processes is re
ected in the
non-ergodicity of the one particle processes in this class of initial intensities.
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6.10.2 The hydrodynamic limit

The �rst correlation function �
t
(x) is the density of the �rst moment measure

of the empirical �eld:

E (nt ('; X )) = E (h'; X t i ) =
Z

' (x)� t (x)dx:

Consider space-time scale transformation given byh'; 
 i ! "dh' (" �); 
 i , t !
" � � t for suitable � > 0, z ! z(" �).

1. If

g(1)
i :=

Z

Rd
dx x i g(x) 6= 0 ;

then for � = 1
Z

Rd
dx � t (x)' (x) =

Z

Rd
dx z(x + tg(1) )' (x);

so that, if the intensity z is smooth enough

@
@t

� t (x) = g(1) � r � t (x) = div( g(1) � t (x))

with the initial condition � 0 = z.

2. If g(1) = 0 , and

g(2)
ij :=

Z

Rd
dx x i x j g(x)

then for � = 2
Z

Rd
dx � t (x)' (x) =

1
(2� )d=2

Z

Rd
dx z(x)

Z

Rd
dk eik �x e� t

2 hg(2) k;k i '̂ (k);

solution of the partial di�erential equation

@
@t

� t (x) =
1
2

dX

i;j =1

g(2)
ij

@2

@xi @xj
� t (x):

3. Consider weak asymmetries, decomposingg into a sum of an even func-
tion p and an odd function q, and use the scaling

g" := p + "q

and � = 2 .
The limiting density � t is solution of the partial di�erential equation

@
@t

� t (x) = div( g(1) � t (x)) +
1
2

dX

i;j =1

g(2)
ij

@2

@xi @xj
� t (x):
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6.10.3 Far from Equilibrium

More General Initial States
The construction of the free Kawasaki process and its scaling limits are not

restricted to Poissonian initial distributions. Su�cient conditions for admis-
sible measures can be stated in terms of their correlation functions and are in
particular ful�lled for Gibbs measures at high temperatures.

Gibbs Measures A probability measure � on � is called a Gibbs measure
for V , intensity function z � 0, and inverse temperature � if it ful�lls the
Georgii-Nguyen-Zessin equation [NZ79]

Z

�
� (d
 )

X

x 2 


H (x; 
 ) =
Z

�
� (d
 )

Z

Rd
dx z(x)H (x; 
 [ f xg)e� �E (x;
 ) (411)

with

E(x; 
 ) :=

8
>><

>>:

X

y2 


V(x � y); if
X

y2 


jV (x � y)j < 1

+ 1 ; otherwise

:

(Equivalent to DLR-equation, see [Georgii, Nguyen-Zessin].)

The correlation functions corresponding to such measures ful�ll a Ruelle
bound, and thus, the measures are supported on� , but are neither reversible
nor invariant initial distributions for the free Kawasaki dynamics.

Theorem: Consider a Gibbs measure with translation invariant potential V,
temperature and activity z which is in the high temperature low activity regime,
and let the Fourier transform of z be a bounded signed measure. Then

1. the �rst correlation function has arithmetic mean, and the one-dimensional
distribution P� z ;t converges weakly to� mean( z) when t goes to in�nity.

2. Hydrodynamic scaling PDEs hold as before, where now the initial value
� 0(x) is a scaling limit of the �rst correlation function.

Speci�cally, because of translation invariance the 1st correlation function for
a constant activity c is a constant

� (1) = � (1) (c):

For z = z(x) have
� 0(x) = � (1) (z(x)) :

Proof and more details:
Yu. Kondratiev, T. Kuna, M.J. Oliveira, J.L. Silva, L. Streit, Hydrodynamic

limits for free Kawasaki dynamics of continuous particle systems. To appear
2008.

http://www.math.uni-bielefeld.de/sfb701/preprints/sfb08082.pdf
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